
©Copyright 2010 DigiPen Institute of Technology and DigiPen (USA)
Corporation. All rights reserved.

Non-Photorealistic Real-Time Edge Rendering using
Non-Duplicate Parallel Detection and Capping

BY
Dwight House

B.S. Computer Science, Louisiana State University Shreveport, 2007

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the graduate studies program
of DigiPen Institute of Technology

Redmond, Washington
United States of America

Summer
2010

Thesis Advisor: Dr. Xin Li

DIGIPEN INSTITUTE OF TECHNOLOGY
GRADUATE STUDY PROGRAM

DEFENSE OF THESIS

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE
MASTER OF SCIENCE THESIS OF
HAS BEEN SUCCESSFULLY COMPLETED ON
TITLE OF THESIS:

MAJOR FILED OF STUDY: COMPUTER SCIENCE.

COMMITTEE:

Dr. Xin Li, Chair Dr. Gary Herron

Dr. Jason Hanson Mr. Chris Peters

APPROVED:

Dr. Xin Li date Dr. Xin Li date

Graduate Program DirectorGraduate Program Director Dean of FacultyDean of Faculty

Mr. Samir Abou-Samra date Mr. Claude Comair date

Department of Computer ScienceDepartment of Computer Science PresidentPresident

The material presented within this document does not necessarily reflect the opinion of
the Committee, the Graduate Study Program, or DigiPen Institute of Technology.

Dwight House
May 21st, 2010

Non-Photorealistic Real-Time Edge Rendering using

Non-Duplicate Parallel Detection and Capping

INSTITUTE OF DIGIPEN INSTITUTE OF TECHNOLOGY
PROGRAM OF MASTERʼS DEGREE

THESIS APPROVAL

DATE:

BASED ON THE CANDIDATEʼS SUCCESSFUL ORAL DEFENSE, IT IS
RECOMMENDED THAT THE THESIS PREPARED BY

ENTITLED

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF COMPUTER SCIENCE FROM THE PROGRAM
OF MASTERʼS DEGREE AT DIGIPEN INSTITUTE OF TECHNOLOGY.

Dr. Xin Li
Thesis Advisory Committee Chair

Dr. Xin Li
Director of Graduate Study Program

Dr. Xin Li, Dean of Faculty

The material presented within this document does not necessarily reflect the opinion of
the Committee, the Graduate Study Program, or DigiPen Institute of Technology.

May 21st, 2010

Dwight House

Non-Photorealistic Real-Time Edge Rendering using Non-Duplicate

Parallel Detection and Capping

Acknowledgements

I would like to thank my family for their unending love, support, and
encouragement. I thank also my friends who gave me moral support and
assistance throughout the creation of this thesis. Thanks to Dr. Herron for his
assistance in several key areas of my thesis study. Finally, I thank my thesis
advisor Dr. Li for his guidance, patience, and kind words.

Table of Contents

1. Abstract " 1

2. Introduction" 2

2.1. Applications of Edge Detection" 4

2.2. Types of Edges" 5

3. Edge Detection Method Overview" 8

4. Hardware Methods" 9

4.1. Back-Facing Wireframe Contours" 9

4.2. Back-Facing Filled Polygon Contours" 11

4.3. Offset Back-Facing Filled Polygon Contours" 11

4.4. Thickness-Normalized Back-Facing Filled Polygon Contours" 13

4.5. Stencil-Based Pixel Shifted Silhouettes" 14

4.6. Inverted Stencil Contours" 16

4.7. Hardware Creases and Contours" 17

5. Image-Space Methods" 19

5.1. Image Processing with the Sobel Operator" 19

5.2. Other Operators" 20

5.3. Input Imagery " 22

5.4. Modern Implementation" 23

5.5. Technique Variations" 25

5.6. Advantages and Disadvantages" 25

6. Object-Space Methods" 27

6.1. Drawable Edge Tests" 27

6.2. Edge Detection" 29

6.3. Edge Rendering" 32

6.4. Thick Edge Gaps" 34

7. Miscellaneous Methods" 36

7.1 Surface Angle Contours" 36

7.2 Expanded Inverted Geometry Contours" 37

8. Morgan McGuire and John F. Hughesʼ Hardware-Determined Feature
Edges" 38

8.1. Data Structure" 38

8.2. Edge Detection" 40

8.3. Edge Creation" 41

8.4. Cap Creation" 44

8.5. Problems" 46

9. Miscellaneous Contributions" 47

9.1. Depth-Based Edge Thickness" 47

9.2. Reduce Effects of Incorrectly Projected Normals" 51

9.3. Alternate Drawable Edge Types" 54

10. Non-Duplicate Parallel Edge Detection and Capping" 58

10.1. Method Overview" 58

10.2. Data Structure" 59

10.3. OpenCL Notes" 61

10.4. Edge Detection and Creation" 62

10.5. Cap Detection and Creation" 63

10.6. Rendering" 66

11. Comparative Analysis" 68

11.1. Operation Quantities" 69

11.2. Memory" 72

11.3. Rendered Output" 77

11.4. Speed" 77

12. Conclusion" 81

13. Future Work" 82

Work Cited" 84

Bibliography" 87

1. Abstract

Non-photorealistic rendering (NPR) provides distinctly different information to the
viewer when compared with photorealistic rendering. Examples of NPR range
from visually pleasing toon and watercolor styles to the highly precise and
informative technical illustration styles. One of the most important structures that
can be found in many different NPR styles is the humble edge. It can define
boundaries, amplify structure, highlight importance, and is an essential
component of several artistic styles. Their utility has inspired research on real-
time edge detection and rendering techniques since the early days of computer
graphics. There are dozens of diverse methods to achieve real-time edge
detection and rendering.

In this thesis, a survey of major edge detection methods is presented. The
methods in the survey are divided into four distinct categories. Next, Morgan
McGuire and John F. Hughʼs “Hardware-Determined Edge Features” method is
described in detail. It forms the basis for the authorʼs exploration of, and
contributions to, edge detection. Then, the author details his attempts to correct
the problems with McGuire and Hughesʼ method. A few alternative methods are
explored that take advantage of OpenCL, a new GPU computation technology.
Finally, the effectiveness of the contributions are analyzed and compared.

1

2. Introduction

Non-photorealistic rendering (NPR) is any rendering with an intent other than the
creation of photorealistic imagery. The power and customizability of more recent
graphics card hardware has made real-time NPR a reality in popular media and
games. One structure that spans nearly all forms of non-photorealistic rendering
is the humble edge. Edges have surprising expressive power for their relative
simplicity. Using edges, inner-object structure and the differentiation of nearby
objects can be amplified and stylized. The following images are some examples
of games that use edges and other effects in their non-photorealistic rendering.

Figure 2-1: Viewtiful Joe (Capcom Production Studio 4) uses edge detection, cell shading, and
various movie and anime-inspired animation effects to achieve an over-the-top graphical
experience to match the chaotic nature of the gameplay. (Image courtesy of The Next Level [Next
Level, The 03])

2

Figure 2-2: Ōkami(Ready at Dawn) makes use of a simpler, more sketchy edge detection along
with screen-space canvas texturing and blurred cell-shading to create the visual appearance of a
painting. (Image courtesy of Binge Gamer [Binge Gamer 08])

There are many methods of detecting and rendering edges. The author has
chosen to limit the topic only to real-time edge detection on polygonal meshes.
The author also focuses on the detection of edges over their subsequent
rendering. Even with these restrictions, dozens of methods and considerations
remain.

The practical applications of edges are detailed and the edge types are defined
in the remainder of the introduction. Next, a survey of edge detection and
rendering methods is presented. The various methods are broken down into four
sub-categories: hardware, image-space, object-space, and miscellaneous
methods. Then, a paper by Morgan McGuire and John F. Hughes on GPU
accelerated edge detection is described in detail as it forms the basis the
authorʼs research. The author then explains his research and contributions,
including attempts to address failures, and exploration of alternative, but similar,
edge detection methods. These new variations are analyzed and compared to
McGuire and Hughesʼ method in terms of speed, memory usage, and overall
calculation quantity. Finally, the author suggests additional possibilities for
improvement.

3

Figure 2-3: Several Utah Teapots rendered with depth-scaled object-space edge detection and a
normal shader.

2.1. Applications of Edge Detection
Edge detection and rendering are used primarily for graphical styles and to
provide structural and positional differentiation. A list of known edge applications
is below.

• Differentiate objects - An outer border on an object can differentiate it from
other objects and the rest of the scene in the absence of shading. With
shading, it enhances the contrast between objects.

• Differentiate sections of objects - An edge can serve to divide up various
sections of a single object. For example, edges outlining a characterʼs clothes
will greatly differentiate the clothes from the characterʼs skin and face.

• Enhance structural perception - Within the object, the edges can give a
greater weight to a specific part of the mesh, such as the nose or eyes of a
face. Without shading, edges are fully capable of expressing the basic
structure to the mesh.

• Highlighting - If one object needs to be in focus, edges on the object can
help differentiate it from all other objects.

• Anti-Aliasing - Rendering systems typically blend colors and textures across
the surface of the polygon meshes, but on the edges of these meshes,
aliasing occurs because at any given time, the renderer does not know what
the neighboring pixels should be. Edge detection allows a focused application

4

of a blur, which significantly reduces the aliasing artifacts. This is a common
method of anti-aliasing when using deferred shading.

• Achieve specific graphical styles - A wide variety of visual styles require
edge detection as one of their major components. Such visual styles include:
toon shading, technical and architectural illustration, pencil/pen styles, some
forms of fur rendering, and several others.

2.2. Types of Edges
There are only a handful of edge types, but the terminology varies from book to
book and paper to paper. For this thesis, the author will mention the variations in
wording in the title of the types below, but will use the first mentioned name as
the standard term for each type. Additionally, for the purposes of this thesis, all
models and edges are described in terms of polygons. Edge detection and
rendering for non-polygon objects is beyond the scope of this thesis.

Contour/Silhouette/Outline Edge
Contour edges are the polygon edges for which one adjacent polygon is front-
facing and the other is back-facing. Contours are view-dependent and animation
dependent. They cannot be pre-calculated, though some methods can use
preprocessing to increase the speed of the test.

There is often need to differentiate the outer contour that surrounds the object
from internal contours. Some visual styles prefer to have a thicker edge on the
outer contours in order to reinforce the difference between each object. In this
paper, the author chooses to call this subtype “silhouette.” There is a lot of
terminological conflict over this type of edge. Many papers refer to all contours,
internal and external, as silhouettes.

Crease/Hard/Feature Edge
Crease edges represent discontinuities in the surface of a mesh. A polygon edge
is a crease edge if the angle between the adjacent polygonsʼ normals is greater
than a user-defined “dihedral” angle [Gooch and Gooch 01]. Some
implementations choose to split crease edges into two sub-categories, ridge and
valley creases [McGuire and Hughes 04].

5

• Ridge Crease Edge - A crease edge where the internal angle between the
two adjacent polygons is less than a user-defined ridge dihedral angle.

• Valley Crease Edge - A crease edge where the external angle between the
two adjacent polygons is less than a user-defined valley dihedral angle.

Crease edges are not view dependent, but they can change based on animation.

Boundary/Border/Surface Boundary Edge
Boundary edges only occur on non-closed models [Gooch and Gooch 01]. It is a
polygonal edge of only one polygon. These edges are not view-dependent and
do not change with animation. Thus, they can be pre-calculated with no ill effects.

Intersection/Self-Intersection/Collision Edge
Intersection edges occur when two polygon surfaces pass through each other
such that their intersection line does not correspond to a polygon edge. This is
the least mentioned edge type in the literature. Some papers ignore these edges
and others define them as self-intersections, only applying them to meshes that
pass through themselves. No paper the author has read has accounted for these
types of edges formed by the intersection of polygons from two different meshes,
though the concept is identical. Self-intersection edges may be pre-calculated as
long as they do not animate. Intersection edges between different objects can
only be pre-calculated if both objects do not animate or move relative to each
other.

Marked/Material Edge
Marked edges are merely polygon edges that the user has defined to always be
a drawn edge. These edges are not view-dependent or animation-dependent,
because they are pre-calculated by definition. Often they are used to separate
major sections of a mesh regardless of orientation.

Drawable Edge
This is the authorʼs term for the polygon edges that will be drawn on a given
frame, as opposed to all those that are not drawn. It can be used to refer to any
other type of edge, except intersection edges. This differentiation is used to avoid
ambiguity when discussing object-space edge detection.

6

Figure 2-4: The teapot on the top-left shows contour edges. Notice how contour edges can be
internal and external (silhouettes). The cube on the top-right is made up of creases (inner edges)
and silhouettes (outer edges). The edges on the two ends of the tube on the bottom-left are
boundary edges. The bottom-right image shows that the polygons of the teapot do not
correspond to the intersection edge highlighted in red.

7

3. Edge Detection Method Overview

There are dozens of ways to detect and render edges in real-time. They all fit into
roughly four categories: hardware, image-space, object-space, and
miscellaneous methods. Hardware methods are quick and simple to implement,
but with severe limitations. Image-space methods are a bit more involved and
provide medium quality results. Object-space methods provide maximum quality
and customizability, but often at the cost of speed. The miscellaneous category is
a catch-all, but these methods tend to be quick and limited like hardware
methods. The following sections survey significant methods in each category.

8

4. Hardware Methods

Hardware-based edge detection and rendering covers a wide variety of different
methods. They all lack the need for mesh pre-processing, allowing them to be
highly adaptable to new scenes and mesh animation. Edge detection is achieved
as a by-product of their rendering modes and order, rather than a specific edge
detecting step. They represent the first and simplest available methods of
interactive edge detection.

Unfortunately, they are very limited in terms of customizability. They typically
generate single pixel edges for which only the color can be changed. Unless
combined with other techniques, they generally only detect contour edges.

4.1. Back-Facing Wireframe Contours
Jarek R. Rossignac and Maarten van Emmerik [Rossignac and Emmerik 92]
described how to generate contour edges in their description of their Contour
Edges with Hidden-lines Suppressed (CEHS) method. It only displayed a meshʼs
edges, not the mesh itself.

The part of the algorithm that deals with contour edges is:

1. Render the object's polygon into the z-buffer (nothing drawn to screen)
2. Shift depth buffer backwards
3. Increase the thickness of line rendering
4. Render the polygon in wireframe mode
5. Return the depth offset to its original position
6. Return line rendering to normal thickness

Figure 4-1: In step 1, the sphere mesh is rendered to the depth buffer (the dashed grey line)
around the object origin (the red dot). In step 2, the origin is shifted back slightly. Step 4 renders
the sphereʼs polygons in wireframe mode at the new origin using thick edges. The depth bufferʼs
values prevent most of the edges from being rendered (grey areas). Step 5 shifts the origin back,
preparing the scene for the next render.

9

By writing values to the depth buffer before shifting backwards, most edges are
prevented from being drawn in step 4. Since the lines are rendered with
additional thickness, lines on contour edges will poke out from behind the
invisible "depth mask."

The color of these edges can be customized as desired. The thickness of the
edge can also be controlled with the thickness value applied to the lines in step
3. Because line thickening does not round the ends of the lines it draws,
sufficient thickness will result in gaps between adjacent edges. This can be
alleviated by rendering a third pass where every vertex is rendered as a point,
each thickened to the same degree as the edges.

Bruce and Amy Gooch [Gooch and Gooch 01] described a variation on
Rossignac and van Emmerik's method.

The modified algorithm is:

1. Enable back-face culling
2. Set depth function to "Less Than"
3. Render the mesh in fill polygon mode (front-facing polygons only)
4. Enable front-face culling
5. Set depth function to "Less Than or Equal To"
6. Render the mesh in wireframe mode (back-facing polygons only)

Figure 4-2: The green arrow represents the state of the depth function. In step 3, it is in less than
mode. Steps 5 and 6 have the depth function in less than or equal to mode. The blue line
represents the front-facing polygons and the black line represents the back-facing polygons in
wireframe mode. The dots in step 6 represent points on the model where the depth function will
overwrite front-facing pixels with back-facing pixels, creating the contour.

This variation favors changing how the depth buffer deals with values at the
same depth, rather than offsetting the whole mesh. As a result, even though the
back-facing pixels could be considered behind the previously rendered front-
facing pixels, by default an edge with a maximum width of one pixel will still

10

render. Gooch and Goochʼs modified method is faster than Rossignac and van
Emmerikʼs method, because only half of the polygons are rendered in each pass.

One final variation combines the ideas of both above variations. Steps 2 and 5 of
Bruce and Amy Goochʼs method can be ignored if one desires contour edges
that do not overlap the mesh at all. In this variation, the line thickness must be
set greater than one to have any visible effect on the final image.

4.2. Back-Facing Filled Polygon Contours
Ramesh Raskar and Michael Cohen [Raskar and Cohen 99] discussed several
hardware-based methods of edge detection. Their first attempt was a step
backward from the previously mentioned technique, but it was needed to reach
their final, advanced technique.

The algorithm is virtually identical to Bruce and Amy Gooch's modifications
above, except that wireframe rendering is replaced with filled polygon rendering.
However, Raskar and Cohenʼs method was published first.

The algorithm is:

1. Enable back-face culling
2. Set depth function to "Less Than"
3. Render the mesh in fill polygon mode (front-facing polygons only)
4. Enable front-face culling
5. Set depth function to "Less Than or Equal To"
6. Render the mesh in fill polygon mode (back-facing polygons only)

Because the polygons are not scaled and cannot be thickened the way that lines
can, rendered contour edges using this technique will be a maximum thickness of
one pixel. Contour pixels may be missed or flicker due to z-buffer quantization
and pixel sampling.

4.3. Offset Back-Facing Filled Polygon Contours
Raskar and Cohen mentioned another technique that would allow for thicker
edges. It uses depth offsets to force the back-facing polygons toward the

11

camera, pushing through the surface of the front-facing polygons at contour
edges. More of the back-facing polygons' area will be rendered on top of the
front-facing polygons than in previous methods.

The algorithm is:

1. Enable back-face culling
2. Set depth function to "Less Than"
3. Render the mesh in fill polygon mode (front-facing polygons only)
4. Enable front-face culling
5. Set depth function to "Less Than or Equal To"
6. Offset render depth towards camera a defined distance
7. Render the mesh in fill polygon mode (back-facing polygons only)
8. Return depth offset to normal

The thick edges this technique allows come at a dramatic cost. Since the back-
faces are pulled through the front-faces, the orientation of the front-facing surface
will determine the thickness of the edge. As a result, the overall thickness of the
edge on the mesh will be uncontrollable and inconsistent for many meshes.
Unlike some previous methods, any thickness gained is at the expense of
rendering the edge on top of the front-facing surface of the mesh. This effect may
be desired, however.

Figure 4-3: The leftmost image shows the actual layout of the front (F) and back (B) facing
polygons, and their respective normals. The red dot shows the location of the actual contour
edge. In the second image, shifting the back-facing edges forward a distance equivalent to the
purple arrow, they become the contour edge. However, the inconsistency with this method is
demonstrated on the rightmost image: different front and back-facing polygon orientations will
generate different thicknesses.

12

4.4. Thickness-Normalized Back-Facing Filled Polygon Contours
As one final step, Raskar and Cohen suggested another method to solve the
inconsistent thickness problem while reducing the gapping problem of Rossignac
and van Emmerik's wireframe thickening technique.

Assuming all mesh polygons are convex, the back-facing polygons' edges will be
expanded outward a distance determined by their angle and distance from the
camera. The result is that the actual edges are shifted out from behind the front-
facing polygons the exact distance necessary to create a thickened border that is
equally thick on all sides in screen-space. They call this process “polygon
fattening.”

Each edge should be shifted by:

(z * sin(α)) / dot(E, N)

In the direction:

cross(E, N)

Where z is the distance from the edge midpoint to the camera, α is the angle
between the edge vector and the view vector, V is the view vector, N is the
polygon face normal, and E is the edge vector.

Figure 4-4: The shifted polygon edge maintains the same screen-space thickness despite the
orientation of the polygons making up the edge.

However, this action of shifting the edges outward removes their connectivity.
Without reconnecting them, they will not render as polygons. This is handled by
creating new polygons that fit the shape of the outer edges as a triangle fan. This
process causes the "capping" effect. Every back-facing polygon should be
replaced with a set of 2N polygons, where N is the number of edges in the

13

original polygon. The initial point to which all fan triangles connect should be the
center point of the polygon.

The algorithm could be implemented:

1. Enable back-face culling
2. Render the mesh in fill polygon mode (front-facing polygons only)
3. Enable front-face culling
4. Loop through each back-facing polygon

a. Begin rendering triangle strip, using the polygon's center point as the
initial point

b. Loop through each edge in order
i. Shift the edge outward
ii. Render both points to the triangle strip

It should be noted here that the gaps, while dealt with, are typically not
completely filled as one might expect. How well the capping works is dependent
on the desired thickness of the edge and the angle between each set of two
connecting contour edges.

Figure 4-5: Demonstrating edge fattening and itʼs effects on capping. The brighter areas
represent actual polygons from which the darker areas are calculated. Along contour lines, the
fattened back-facing polygons will partially stick out from behind the front-facing polygons.

4.5. Stencil-Based Pixel Shifted Silhouettes
Tom McReynolds and David Blythe [McReynolds and Blythe 99] described a
method that renders the object multiple times to the stencil buffer, each time at a

14

slight offset on the x and y axes. By rendering an edge-colored quad over the
object with certain stencil pass rules, the silhouette edges of the previously
rendered object will appear.

The algorithm is:

1. Render the shaded mesh, if desired
2. Clear stencil buffer to zero
3. Disable color and depth buffers
4. Set stencil buffer to always pass, the operation to always increment
5. Shift the viewport by one in the positive y direction
6. Render mesh
7. Shift the viewport by two in the negative y direction
8. Render mesh
9. Shift the viewport by one in the positive x direction and one in the positive y

direction
10. Render mesh
11. Shift the viewport by two in the negative x direction
12. Render mesh
13. Shift the viewport by one in the positive x direction (original position)
14. Enable color and depth buffers
15. Set stencil buffer to pass at two or three (the second bit equal to 1)
16. Render edge-colored quad that covers the mesh

15

Figure 4-6: The above illustrations show the state of the stencil buffer after each corresponding
step. The grey area represents the actual drawable mesh pixels. In the last frame (16), the red
indicates which pixels would form the edge.

This method is relatively slow because the scene must be rendered at least four
times per frame.

4.6. Inverted Stencil Contours
A faster, less accurate method of stencil-based edges by K. Akeley was
mentioned in McReynolds and Blytheʼs class. It only requires one render to the
stencil buffer and uses wireframes rather than filled polygons.

The algorithm is:

1. Clear stencil buffer to 0
2. Set stencil function to always pass and the operation to invert
3. Enable back-face culling
4. Render mesh in wireframe mode (front-facing polygons only)

16

5. Set stencil function to pass if the value is 1
6. Render edge-colored quad that covers the mesh

This works because wireframe edges that are part of two adjacent polygons will
be drawn twice, inverting their stencil pixels back to zero. However, the pixels on
the polygon edges between front and back-facing polygons will only be drawn
once, and will have a stencil buffer value of 1.

This technique will also generate front-facing boundary edges, but not back-
facing boundary edges. McReynolds and Blythe suggested that the technique be
combined with the drawing of all visible boundary edges to complete the edges.
They blocked the inclusion of invisible boundary edges by first rendering an
offset depth buffer that would prevent covered edges from rendering. This
method is also susceptible to stencil rendering interference if the whole scene is
processed for edges at once.

4.7. Hardware Creases and Contours
Ramesh Raskar [Raskar 01] released a paper describing a hardware method to
render crease edges in addition to contours. Though the technique takes
advantage of the geometry shader and a secondary depth-buffer, it does not use
a specific edge-detecting step.

The contours are rendered by expanding all back-facing polygons a user-defined
distance, based on the screen-space projection width, similar to Raskarʼs
previous method. After shifting all of these polygonʼs edges outward, the
expanded edges are then reconnected into solid polygons and rendered black to
create the contours.

For creases, the ridge and valley varieties are created differently. The ridge
creases are created by generating a new quad with a length and location
equivalent to each front-facing polygon edge in the geometry shader. When it is
first created, this new quad should be flush with the polygon surface. Before
sending it to the remainder of the pipeline, it should be rotated the user-defined

17

dihedral angle about the edge vector, and thickened the same way as the
contour edges so that all edges have a consistent thickness.

Since the quad is rotated the dihedral angular distance from the originating
polygon, these edges will only appear if the adjacent polygon connects with an
angle sharper than the one defined by the user, creating the crease edge. This
can create z-fighting if the userʼs dihedral angle is equivalent to the angular
distance of two connected polygons.

Valley creases are far more complicated to create. They, like the ridge creases,
use a user-defined dihedral angle to determine where to create expanded
polygon edges as quads. However, the visibility requirements for valley edges
are the reverse of those needed for the ridge creases. To solve this, Raskar
created a dual depth buffer. With two depth buffers, the created valley crease
quad will only be allowed to modify the final image if it renders in-between the
two depth values.

Finally, Raskarʼs method defined a way to detect self-intersection edges using
the dual depth buffer technique again.

18

5. Image-Space Methods

Image-space edge detection and rendering utilizes image processing techniques
to detect discontinuities in one or more rendered images. This operation may
have variations in what image(s) is used as input, what type of image processing
is used, and how the output information is utilized.

5.1. Image Processing with the Sobel Operator
For edge detection, image processing techniques typically apply convolutions to
various properties of images or specialized images to generate gradients, a
vector representing the local maximum change. In image processing,
convolutions take the form of component-wise matrices called kernels or
operators. These operators store numbers in each cell which are multiplied by
some numerical property of the equivalent pixel in the input image. This
operation is applied to every pixel in the input image, with optional special cases
at the image borders where input data may not be available. The resulting output
image data can be used in further calculations or displayed directly.

For each pixel (x) there are surrounding pixels (A, B, C, D, E, F, G, and H) except
at the extreme borders of the viewport. The layout is:

L represents the input pixels that will be used in conjunction with a kernel. Since
a pixel is typically made up of color and alpha transparency information, the user
must decide what property of the input image pixels he will use. The two most
common types of information used will be described later.

The Sobel operator [HIPR 00] will be used to illustrate how operators are applied
to input images. The Sobel operator detects gradients in the horizontal and
vertical axes separately.

19

The typical Sobel operators are:

When one applies the Sobel operator to a given pixel, a component-wise
multiplication is applied and then the inner terms are summed:

LGx = (-A) + C + (-2D) + (2E) + (-F) + H;

LGy = A + (2B) + C + (-F) + (-2G) + (-H);

The LGx and LGy terms can be used to determine the direction of the gradient,
but for the purposes of edge detection, only the magnitude of the gradient is
needed.

The gradient magnitude is calculated:

However, for most purposes, the gradient magnitude can be approximated by:

The gradient magnitude can be used directly in edge detection. By drawing black
pixels where the gradient magnitude is greater than or less than a user-defined
value, edges will be rendered. The process of choosing which pixels to draw
based on the gradient (or any value) is called thresholding.

5.2. Other Operators
The kernel most often used by real-time graphics applications is the Sobel
operator. However, in image processing literature, there are several other edge-
detecting operators. Below is a list of other operators from Wikipedia and
Hypermedia Image Processing Reference [HIPR 00] that might be used.

20

Prewitt Operator Scharr Operator

Robert's Cross Operator
Robertʼs Cross Operator works with a smaller data set and is therefore less
accurate. The unusual size of the kernel means that the “central” pixel is on the
upper left-hand side. Otherwise, it operates under the same principle as the other
operators.

Operator Variations
There are several other versions of the Sobel operator with different numbers,
dimensions, and calculation schemes. These variations are meant to gain
various accuracy or detection abilities not available with the version of the Sobel

21

operator described above [Kroon 09]. Variations exist for the other operators as
well. These variations are beyond the scope of this thesis.

5.3. Input Imagery
In traditional image processing, the input image is typically a grayscale version of
the image for which edges are desired. A grayscale image provides a single
value from zero to one that represents the intensity at each pixel. Dealing with
image noise and non-edge areas of high gradient magnitude are very difficult to
overcome with only the original image available. Real-time graphics provide more
flexibility. While the scene could be rendered in grayscale form and then used for
edge detection on a second pass, edges can be detected with more accuracy
using visualizations of scene information.

Depth Buffer Usage
Takafumi Saito and Tokiichiro Takahashi [Saito and Takahashi 90] used the scene
depth information as their input image. On the first pass, the sceneʼs depth
information is rendered and retrieved. Variations of the Sobel operator are used
to obtain first and second-order differential data. After thresholding and other
error adjustment, the resulting information is rendered to create an edge image.
They also explored methods of using the edge information to enhance the fully
shaded image beyond merely overlaying the edges.

The difficulty with using only the depth information for the edge test is that while
depth buffers can be used to detect contour edges, they are not very good for
use in detecting crease and intersection edges, as surrounding pixels have very
similar depth information. Additionally, depth buffer resolution limitations can
prevent the adequate detection of edges on objects at similar depths.

Normal Buffer Usage
Philippe Decaudin [Decaudin 96] suggested using the sceneʼs normal information
to supplement the depth buffer information. Normals rendered as colors very
distinctly show crease and intersection edge discontinuities. Most edges can be
found using both gradient magnitudes together.

22

Since a normal is a 3D vector, the user may choose to do the edge detection on
all three dimensions of the normal and then sum the resulting modified values.
Otherwise, a one dimensional component of the normal buffer at each pixel is
required. One simple possibility is the dot product of the view and normal vector.
Another is the grayscale version of the normal buffer, which can be found by
summing of the normalʼs axes and then normalizing the result. As with the depth
buffer, the resulting gradient image must be thresholded to get only the desired
edges.

5.4. Modern Implementation
When Saito & Takahashi and Decaudin wrote their respective papers the
graphics hardware available required them to transmit the rendered images back
to the CPU each frame. While the depth information could be retrieved directly,
the normal color information had to be created by rendering the scene twice with
special lighting conditions before the image was transmitted back to the CPU for
image processing. Once the image was processed, it had to be sent back to the
graphics card where the edge information and other shading were combined to
create the final image.

Modern graphics cards provide programmable shaders and framebuffer objects.
The shaders allow for the more specific and easier creation of depth and normal
imagery. The framebuffer objects allow the graphics card to create offscreen
renders that can be held over into subsequent frames without interfering with
imagery rendered to the screen. With these two improvements, image-space
edge detection can be accomplished with two rendering passes without any
significant data transfer to or from the graphics card. [Card and Mitchell 02]

In the first pass, all the sceneʼs geometry should be rendered with a special
shader that does not send its data to the screen. Instead, the fragment (pixel)
shader calculates normal information at each pixel from the vertex normals. The
3D normal information is stored in the RGB components of a framebuffer object
created prior. The depth information, whether calculated manually or not can be
stored in the alpha channel of the same framebuffer object that contains the

23

normal information. Optionally, additional framebuffer objects can be created to
hold other information such as the shade color at each pixel.

In the second pass, a screen-aligned quad with UV coordinates that prevent
wrapping is rendered instead of the scene. In the shader, the UV coordinates of
the quad are used as lookups into the framebuffer object rendered in the
previous frame. At this point, the edge detection methods are performed at each
pixel for both the normal and depth information. Generally, the sum of the edges
found in both sets of information are used together to represent all edges, though
there is plenty of room for customization. Finally, the edge information is
combined with any other shading information rendered in the previous pass to
create the final output color for each pixel. The output of these operations will be
an edge or edge-enhanced image.

Figure 5-1: A shaded scene (A) may be rendered using the image-space edge detection by doing
a pass where depth (left B) and normal (right B) information are rendered to framebuffers. In the
next pass, while rendering a screen-sized quad, the two framebuffers are used by an image
processing operator to get their respective gradient magnitudes (C). The gradient magnitudes are
thresholded and combined to create the final output (D).

24

5.5. Technique Variations
Image-space edge detection is often the method of choice when detecting edges
for the purpose of anti-aliasing because they overlap both sides of the edges
detected. For this use, areas determined to be edges are used as a mask for a
blur operation. This creates an inexpensive anti-aliasing effect that is especially
well-suited to deferred shading.

Additional scene information could be used to further augment the edge
detection. For example, providing every object a unique color would allow
silhouette edges to be detected even of the objects shared nearly identical
depths and surface normals in the edge areas. Unique colors could also be given
to distinct object faces to prevent missed edge cases where an object is folded
over itself, as described in Aaron Hertzmannʼs paper [Hertzmann 99].

5.6. Advantages and Disadvantages
Image-space edge detection has two distinct advantages over other edge
detection techniques:

• Constant edge detection speed

• Natively detects intersection edges

Because the number of edge detecting operations is directly dependent on the
screen size, rather than the number of objects, the edge detecting step of the
second pass will perform at the same speed no matter how simple or complex
the scene is. The first pass is still limited by the hardware and how complicated
the scene is, however.

Intersection edges are discontinuities that donʼt correspond to polygon edges.
However, in image-space, intersection edges are merely another variation of a
surface discontinuity.

The disadvantages are:

• Lack of customizability

• Missed edges

25

• False positive edges

• Relatively high tweaking required to get accurate results

The thickness of the edges canʼt be directly controlled. The only way to get
thicker edges is to apply further image processing or do the edge detection of
buffers that are larger than the output resolution. Though these edges may be
colored, only screen-space texturing is possible.

Depending on the threshold settings, legitimate edges can be missed entirely.
The thresholding might also create false positive edges, where the rate of
change, while smooth, was too great to be ignored by the image processing.

The thresholding values must be tweaked by the user to achieve the desired
results. These threshold values are sensitive to the object, the rendering
purpose, and the userʼs own preferences. More trial and error is required for
image-space edge detection than for other techniques.

26

6. Object-Space Methods

The object-space method of edge detection seeks to identify drawable edges in
three dimensional space. At its most basic, all unique polygon edges are checked
for drawability given a camera position and other factors. All variations on the
basic idea are implementation details, supplemental features, and attempts to
significantly reduce the number of tests necessary.

Figure 6-1: A single polygon edge connecting two adjacent polygons. Na and Nb are the face
normals for the two adjacent polygons. v0 and v1 vertices define the edge. v2 and v3 complete
the two adjacent polygonʼs vertices. The right polygon, and therefore the v3 vertex, may not exist.
If so, the edge is a boundary edge.

6.1. Drawable Edge Tests
The definition of each edge type defines a simple formula for determining if a
polygon edge is drawable from a given perspective. Refer to figure 6-1 for a
graphical reference of the terms used below.

Contour Edge
(dot(Na, V) * dot(Nb, V)) < 0

Where Na and Nb represent the face normals for the two polygons adjacent to
the polygon edge and V represents the view vector, pointing from one of the
edge vertices toward the camera. All vectors should be normalized. [Marshall 01]

Na and Nb can be calculated:

Na = normalize(cross((v1 - v0), (v2 - v0)));

Nb = normalize(cross((v3 - v0), (v1 - v0)));

v0

v1

v2
v3

Nb
Na

27

V can be calculated:

V = normalize(CameraPosition - v0);

The dot product of two normalized vectors is the cosine of the angle between
them. For vectors greater than 90 degrees apart, the result of a dot product is
negative. Two back-facing or two front-facing polygons will result in the
multiplication being positive. Therefore, by multiplying the dot product results
together, only cases where one polygon or the other is back-facing, but not both,
will render the contour test true.

Crease Edge
dot(Na, Nb) < -cos(θ)

Where θ is the user-defined dihedral angle. All vectors should be normalized.

The dihedral angle measures the angle between two planes, which are the two
adjacent polygons in this case. However, the dot product is the cosine of the
angle between the face normals. The dihedral angle and the angle between the
normals form an inverse relationship, hence the negating of the cosine operation
on the right. The crease test will render true if the angle between the polygons is
smaller than the dihedral angle.

To differentiate between ridge and valley crease edges, the following
modifications can be made to the test [McGuire and Hughes 04]:

Ridge Crease Edge
(dot(Na, Nb) < -cos(θr)) && (dot((v3 - v2), Na) <= 0)

Valley Crease Edge
(dot(Na, Nb) < -cos(θv)) && (dot((v3 - v2), Na) > 0)

Where θr and θv are the ridge and valley dihedral angles, respectively. All
vectors should be normalized.

The right side of the test differentiates ridges and valleys by comparing the vector
pointing from v2 to v3 to the face normal Na. This is because the Na points away
from v3 when the edge is a ridge, and it points towards v3 when the edge is a
valley.

28

The differentiation of crease edges into ridge and valley varieties was included
for completeness and will not be mentioned further.

Boundary Edge
Since boundary edges are based on the structure of the mesh and do not cease
to be boundaries when the mesh animates, these edges should always be pre-
calculated and flagged as drawable.

Marked Edge
Similar to the boundary edge, these edges are always pre-calculated. They
should be flagged as drawable.

Intersection Edge
These do not correspond to polygon edges, so they are not handled by object-
space methods. They will not be discussed further in this section.

6.2. Edge Detection
The most basic object-space method requires that the mesh be preprocessed
into an edge mesh, which stores adjacency data for the meshʼs polygon edges. It
should contain the two edge vertices and the one or two other vertices that define
the one or two triangles attached to the edge. Every polygon edge should get
one and only one entry, unless modifications or optimizations require more.

How this is implemented is determined by the needs of the architecture. If
possible, it is beneficial to store the edge mesh in terms of indices into the vertex
array, rather than making duplicates of the vertices. Doing so will significantly
reduce the amount of memory needed to store the edge mesh.

Detecting the edges simply involves looping through each entry in the edge mesh
to determine if it fits the criteria for being drawable. Boundary, marked, and pre-
calculated crease edges can be flagged as always drawable by setting the v3
entry equal to the v0 entry. One could also specifically differentiate the various
pre-calculated drawable edges by setting v3 equal to v1, or v2 equal to v0 or v1.
This edge mesh setup closely resembles McGuireʼs [McGuire and Hughes 04].
Others exist and a few of them are mentioned below.

29

Optimizations and Variations
Markosian et al. [Markosian et al. 97] used complete adjacency information,
storing references to all connecting vertices at each end of the edge. By doing
so, drawable edges could be traversed along their entire length. This traversal
ability removed the need to test every edge every frame. They randomly checked
a portion of the edges for drawability.

When a drawable edge was found, adjacent edges were also checked for
drawability until no more drawable edges could be found. Doing this allowed
them to detect the longest, and therefore the most relevant, edges with a
minimum number of random tests. Because edges tend to stay the same from
frame to frame, a portion of drawable edges from the previous frame were tested
first.

Markosian et al. found a fivefold increase in speed using these optimizations over
testing all edges. Of course, edges can be missed entirely from frame to frame,
so some accuracy is lost. They also used and improved some hidden edge
removal algorithms which prevented occluded edges from being drawn.

Gooch et al. [Gooch et al. 99] described a method where they stored edgesʼ
normal arc on a sphere surrounding the object. Groups of similar arcs, in gauss
map format, were stored hierarchically so that groups of edges could quickly be
deemed all back-facing or all front-facing. A plane was placed at the origin of the
sphere and then aligned perpendicular with the view vector. Edges whose arc
intersect the plane are contour edges. This technique allowed contour edge
detection to be sped up by 1.3 times for their S. Crank mesh and 5.1 times for a
sphere. Unfortunately, this technique only works well under orthographic
projection.

In a similar idea, Sander et al. [Sander et al. 00] created a hierarchical search
tree of polygons. At each node, they created anchored cones that represented
the maximum range of the normals possessed by vertices in the node. This
information can be used to quickly determine that no contour edges are possible
for whole sets of nodes without testing individual edges.

30

John W. Buchanan and Mario C. Sousa [Buchanan and Sousa 00] defined a
different kind of edge mesh that helped in the testing for contour, boundary, and
marked edges. It combined the edge detection into the polygon rendering,
significantly reducing the impact of edge detection on rendering time. However, it
assumed the processing of individual polygons during the rendering process,
which is no longer common thanks to vertex buffer arrays.

Jeff Lander [Lander 01] documented the optimization of ignoring edges that have
co-planar adjacent polygons. Flat planes only generate drawable contour edges
on their outside edges, not their internal edges, and they lack the angular
difference between adjacent polygons to generate crease edges. During the
preprocessing step, an additional test checks for co-planar adjacent polygons. If
found, the edge is not added to the edge mesh.

Depending on how the mesh is created and how many flat areas it has, the
savings in the number of needed edges can be significant. For example, the
author found that 22.3% of the edges in the Utah Teapot can be safely ignored,
and an amazing 50% of a cylinderʼs edges can be ignored. Low-polygon meshes,
typically created using triangles instead of quads have a much lower number of
ignorable edges. Only 1.6% of Blenderʼs Suzanne Monkey model can be
ignored.

Morgan McGuire and John F. Hughes [McGuire and Hughes 04] detailed a
method to shift the entirety of the edge detection and rendering to the graphics
card via programmable shaders. Copies of adjacency, vertex, and normal
information were stored in vertex buffer arrays and accessed within the vertex
shader. If the edge was found renderable, the degenerate duplicate vertices were
turned into screen-aligned quads. Otherwise, they were shifted behind the
camera, where they would be clipped during the rendering process. McGuire and
Hughes also took a critical look at how the thick edge gaps could be filled
effectively. Since McGuire and Hughesʼ paper had a major influence on this
thesis, its algorithms and features will be more specifically described later.

31

Still other variations exist. Aaron Hertzmann and Dennis Zorin [Hertzmann and
Zorin 00] described a method of using 4D dual surfaces to determine the contour
edges with curve-plane intersections. Tom Hall [Hall 03] created a modification of
Markosian et al.ʼs technique by focusing almost exclusively on tracking contour
changes from frame to frame. By looking at adjacent edges to previously found
edges and noticing the relative camera change, he was able to significantly
reduce the number of edges tested. His method worked especially well with
highly tessellated meshes.

6.3. Edge Rendering
In object-space edge detection, the rendering is a distinctly different process from
the detection. After a polygon edge has been determined drawable, the user has
the choice of what to do with that information. The possible edge effect is highly
dependent on the technology available and speed requirements. In this section,
several methods of edge rendering are discussed.

Line Edge
The simplest method of drawing the edges is to create a rasterized line between
the two edge points: v0 and v1. If the hardware supports it, thick edges can be
created by specifying these rasterized lines be greater than one pixel in width.
This method is very fast and requires no additional processing of the edges. One
advantage rasterized lines have over a single pixel-width quad is that no matter
their orientation, they always render a single pixel on the edge. A single pixel-
width quad can get rendered to less than a single pixel at some orientations,
creating artifacts. However, these lines can only be customized in terms of their
color. They cannot be textured.

Quad Edge
By expanding edges into screen-space quads, they can be made as thick as the
user desires, textured, and/or anti-aliased. McGuire and Hughes [McGuire and
Hughes 04] worked almost exclusively with this method. They constructed two
types of edges from quads: full and half quad edges.

32

Full quad edges were made by generating the screen-space perpendicular
vector, scaling it, and using it to offset the points of the edge on both sides. This
generated a thick quad around every drawable edge.

Half quad edges were used mainly for contours. Since each edge is on the
surface of the mesh, contour edges would have half of their quad rendered below
the surface. This can lead to artifacts. Half quad edges only render on the
“outside” of the mesh, pointing in the same direction as v0ʼs vertex normal n0,
solving the artifact problem.

Figure 6-2: The full quad method (left) has artifacts on the spout and lid where the bottom half of
an edge pushes through the surface. Using half quad edges for the contours (right), these
artifacts are eliminated.

Like any quad, these edges can be textured, anti-aliased, or shaded as the user
desires. Adjusting the scaling factor for the perpendicular vector allows thickness
control.

Other Artistic Edges
J.D. Northrup and Lee Markosian [Northrup and Markosian 00] connected related
edges together to form a few sets of long, connected edges. They then expanded
the edges into connected screen-space quads, which were easily textured. Using
this connection step, textured strokes could easily extend beyond the bounds of
a single polygon edgeʼs screen-space length. Such realistic stroke
parameterization is difficult when edges are treated independently.

33

Jeff Lander [Lander 01] used multiple rasterized lines rendered at slight distance
and rotational offsets to get a sketchy look. Marc ten Bosch [Bosch 06] created a
method of partial edge detection that faded edges in as they approached
visibility, and faded them out as they approached invisibility. This reduces the
sometimes problematic popping effect that occurs when the contour edge from
the previous frame shifts to another polygon edge.

6.4. Thick Edge Gaps
When rendering thick edges as thick lines or screen-space quads, non-parallel
connecting edges will have visible gaps. These gaps get worse as the edges are
made thicker. There have been a few attempts to address this problem.

Figure 6-3: Two connected drawable edges. Since they are not parallel, they create a gap above
their connection point.

Bruce Gooch et al. [Gooch et al. 99] suggested that a single, thick point be
rendered at both ends of any drawable edge. While this will smoothly solve the
gap problem, thick rasterized points are not always available. Additionally, these
points can generate the same artifacts as full quad edges on contours, and they
interrupt edge texturing.

34

Figure 6-4: The red dot represents the screen-space vertex where the two edges connect. A
single dark grey point is drawn there with a thickness equivalent to the edgesʼ thickness.

Morgan McGuire and John F. Hughes [McGuire and Hughes 04] solved the gap
problem with the limited resources of the GPU shader environment by rendering
two extra cap-passes, where they generated triangle caps on both ends of the
edge. The caps of connecting edgesʼ triangle caps shared a vertex along the
vertex normal projected into screen-space, which allowed the caps to line up in
most cases. They also found a way to implement texture parameterization on
these caps such that they wouldnʼt interfere with the texturing of the edges they
connected to. There were a few problematic cases, however, when the vertex
normalsʼ screen-space projections did not reflect the curvature of the edge,
resulting in caps on the wrong side. They suggested generating caps on both
sides of the edge in cases where such failure was likely. To make smoother caps,
they also suggested that caps could be generated out of a triangle fan, rather
than a single triangle, but at the expense of many additional render passes.

Figure 6-5: Using the red screen-space normal, both the left and right edges will generate half of
the cap that fills the gap.

35

7. Miscellaneous Methods

This category is a catch-all for those methods that donʼt fit well in other
categories. Thus, there are no real similarities among the methods listed.

7.1 Surface Angle Contours
Surface angle contours take advantage of the fact that as the surface of a
smooth mesh approaches a contour, the normal becomes closer and closer to
perpendicular to the view vector. The contour occurs on the surface at exactly the
points on the surface where the view and normal vector are perpendicular.

Theoretically, the surface could be shaded black when the normal is exactly
perpendicular to the view vector. However, meshes are made of flat polygons
and their edges can be completely missed if using only the exact perpendicular
pixels. Thus, the surface angle contour method always uses a range of values
close to the perpendicular to indicate edges, regardless of implementation.

Gooch et al. [Gooch et al. 99] briefly mentioned the use of an environment map
containing black color on the outer rim, forming a dark circle. Since the outer rim
of the environmental map is where the calculated reflection direction of the near-
perpendicular surface areas will access, the surface near the contours get
rendered black.

Carl Marshall [Marshall 01] implemented the idea using a pixel shader. At each
surface pixel, the dot product of the view and normal vector was used to index
into a 1D texture that contained a dark color at the lower end. Additionally, one
could simply threshold the dot product value to render black below a certain
value, as displayed in Figure 7-1.

Figure 7-1: This variation uses a thresholding dot product check in a pixel shader. Some objects
work better than others with this method, but the edge width is almost always inconsistent. The
cube illustrates the main failure case for this method.

36

Though this method is extremely simple and inexpensive, it yields inconsistent
results for some meshes. This method fails to correctly handle flat surfaces.

7.2 Expanded Inverted Geometry Contours
Christopher Evans [Evans 03] described this method in a tutorial. The technique
creates contour edges by rendering the mesh twice. The first pass renders the
object normally, with whatever shading desired. The second pass, however,
renders the same object scaled up slightly, with no shading, colored black, with
its normals inverted, and back-face culling enabled. The combination of back-
face culling and inverted normals only allows the back side of the scaled object to
render, forming outlines for the object.

This method is extremely simple to implement and has a different visual effect
than similar hardware methods. However, it also shares the multiple renders and
relative lack of customizability of hardware methods.

Figure7-2: The black edges are actually a scaled version of the bomb, rendered with back-face
culling, inverted normals, and no shading. Some artifacts are generated, but it generally gives
pleasing results. (Image courtesy of ChrisEvans3D.com [Evans 03])

37

8. Morgan McGuire and John F. Hughesʼ Hardware-
Determined Feature Edges

The author focused heavily on improving the object-space method described by
Morgan McGuire and John F. Hughes [McGuire and Hughes 04]. To provide
context and ease understanding, the author here details McGuire and Hughesʼ
work as it relates to the authorʼs contributions.

McGuire and Hughesʼ goal was to transfer all detection and rendering of edges to
the graphics card, gaining the speed of parallel calculation and removing the
bottleneck of geometry data transfer from the CPU to the GPU. Parallel
computation and the technology of the time forced them to test every polygon
edge independently, unlike some of the object-space optimizations. As a result, a
large amount of GPU memory is required.

The method used four render passes:

• Mesh pass - Render mesh normally at a slight backward offset

• Edge pass - Render drawable edges as expanded quads or lines

• Cap pass (first side) - Render the first side cap of each drawable edge

• Cap pass (second side) - Render the second side cap of each drawable edge

8.1. Data Structure
McGuire and Hughes created an edge mesh data structure that contained four
edge vertices for each unique polygon edge. Each edge vertex contained values
required for edge detection and generation. Those that can be represented
geometrically are shown in Figure 8-1.

38

Figure 8-1: The important geometric values for each edge in McGuire and Hughesʼ method: v0,
v1, v2, and v3 are vertices on two polygons that share an edge. n0 and n1 are the vertex normals
for v0 and v1, respectively.

The values in each edge vertex are:

• v0 - first vertex in the edge

• v1 - second vertex in the edge

• v2 - final vertex that, with v0 and v1, makes the first polygon

• v3 - final vertex that, with v0 and v1, makes the second polygon

• n0 - v0ʼs normal vector

• n1 - v1ʼs normal vector

• r - random scalar used in texture parameterization

• i - scalar from 0 to 3 that differentiates duplicates in the edge mesh

v0, v1, v2, v3, n0, and n1 are all 3D vectors. r is used only for object-space
texture parameterization. i is used to pick different output vertices in the vertex
shader so that the edge will become non-degenerate. If the edge is a boundary
edge, there is no v3 vertex. In that case, v3 should be set equal to v0.

For each polygon edge, all of the above values are obtained from the mesh,
except for i. The newly formed edge vertex is duplicated three times. Each of the
now four edge vertices with the same data are given a different, ordered i value
from 0 to 3. All four of these edge vertices for each polygon edge is stored with
all other edge vertices in an edge mesh. Finally, the edge mesh is copied into

v0

v1

v3

v2

n1

n0

39

vertex buffers on the GPU for later use. This preprocessing step is quite
expensive, but once complete, all edge detection and rendering can be
accomplished by the GPU with no special data transfer whatsoever.

The user needs some way of referencing the edge mesh buffers on the GPU.
Generating an index array buffer containing sequential numbers from 0 to (4E -
1), where E is the number of unique polygon edges, allows the data to be
referenced and rendered with a single render call. Furthermore, other index array
buffers can be created to reference only the first three, or first two, i values of
each set of four edge vertices. Such index array buffers are useful for rendering
caps and thin edges.

8.2. Edge Detection
McGuire and Hughesʼ method of edge detection uses a special vertex shader to
access the edge mesh data from the vertex buffers prior to doing calculations.
Once the data has been obtained, typical object-space edge detection is
performed. As mentioned in Section 6.1, the edge tests are:

Contour (dot(Na, V) * dot(Nb, V)) <= 0

Crease dot(Na, Nb) < -cos(θ)

Boundary v3 == v0

Marked v3 == v0

Where Na and Nb are calculated:

Na = normalize(cross((v1 - v0), (v2 - v0)));

Nb = normalize(cross((v3 - v0), (v1 - v0)));

And V is calculated:

V = normalize(CameraPosition - v0);

In the event that an edge is determined drawable, the vertex shader must
calculate an output vertex. McGuire and Hughes differentiated ridge and valley
creases. However, the author does not differentiate them in his tests.

40

8.3. Edge Creation
The user has several choices for what type of edge to generate, including a
rasterized line, full quad, or half quad. For each type of output, the i value is used
to determine which of several output vertices should be generated.

Rasterized Line Edge
For rasterized lines, only two duplicates per edge vertex are needed in the edge
mesh. If available, itʼs most efficient to use an index buffer that contains only the
indices of the first two edge vertices per set in the edge mesh. When the i value
is 0, the vertex shader should output MVP * v0. Otherwise, it should output MVP
* v1. MVP is the ModelViewProjection matrix.

Required Screen-Space Values
For both quad edge types, McGuire and Hughes create them in screen-space to
ensure a consistent thickness. The screen-space versions of some edge
components are needed to accomplish the creation process. Those values are:

• s0 - v0 in screen-space

• s1 - v1 in screen-space

• m0 - n0 in screen-space

• p - normalized perpendicular vector to the screen-space edge vector (s1 - s0)

The calculation of each value is described below. Note that the uncommon
vector-vector multiplication and division operations are used in these and
following operations. They should simply be treated as component-wise
multiplication and division. Also note that McGuire and Hughes did not fully
convert vertices to screen-space, doing their calculations in projection-space
instead. The author fully converts all edge generation vertices and vectors to
screen-space in his calculations below.

vec4 s0 = MVP * vec4(v0.xyz, 1.0);

s0.xy = (s0.xy / s0.w) * vec2(Width, Height);

vec4 s1 = MVP * vec4(v1.xyz, 1.0);

s1.xy = (s1.xy / s1.w) * vec2(Width, Height);

41

s0 and s1 are calculated storing v0 and v1 multiplied by the combined model,
view, and projection matrices (MVP). Then, their x and y components are sent to
screen-space by doing the homogeneous division and multiplying by the width
and height of the viewport (Width and Height), respectively.

vec4 temp = MVP * vec4(v0.xyz + n0.xyz, 1.0);

temp.xy = (temp.xy / temp.w) * vec2(Width, Height);

m0 = normalize(temp.xy - s0.xy);

A point on n0 is converted to screen-space, then that value is subtracted from the
s0 point. This normalized vector is m0.

p = normalize(vec2(s0.y - s1.y, s1.x - s0.x));

The p vector can optionally be lengthened or shortened to vary the screen-space
thickness of the final quad. Using it and the other screen-space values in
conjunction with each vertexʼs i value, the full and half quads can be created as
described below.

Full Quad Edge
By default, an edge should be created as a full quad. This always applies to
crease, border, and marked edges. Contour edges can optionally be rendered as
half quads. The creation of each output vertex is described by the table below.

ID Output Vertex

i = 0 vec4((s0.xy - p.xy) / vec2(Width, Height) * s0.w, s0.zw)

i = 1 vec4((s1.xy - p.xy) / vec2(Width, Height) * s1.w, s1.zw)

i = 2 vec4((s1.xy + p.xy) / vec2(Width, Height) * s1.w, s1.zw)

i = 3 vec4((s0.xy + p.xy) / vec2(Width, Height) * s0.w, s0.zw)

This output is described graphically in Figure 8-2. Note that the projection to
screen-space operation is inverted after offsetting the edge points by the p
vector, so that the vertex shader exports valid data.

42

Figure 8-2: For each point in the degenerate set, the output is created based on the i value.

Half Quad Edge
The half quad method is intended for use with contour edges only. As mentioned
in section 6.3, they prevent the bottom half of the quad from sticking through
nearby geometry. To ensure that the edge is rendered to the outside of the mesh,
each use of the p vector is modified by a sign operation. It reverses the direction
of p if it is pointed away from m0 (that is, the angle between them is greater than
90 degrees). The creation of each output vertex is described by the table below.

ID Output Vertex

i = 0 s0

i = 1 s1

i = 2 vec4((s1.xy + p.xy * sign(dot(m0, p))) / vec2(Width, Height) *
s1.w, s1.zw)

i = 3 vec4((s0.xy + p.xy * sign(dot(m0, p))) / vec2(Width, Height) *
s0.w, s0.zw)

43

Figure 8-3: The p vector is always pointing outward in this method, so the edge quad will only
render on the outside of the mesh.

Non-Drawable Edges
If the edge is not drawable, the vertex (0, 0, -1, 1) should be generated as output.
Such a projection-space point will always render behind the near plane, and the
pipeline will clip it before attempting to render it. This is how McGuire and
Hughes accounted for the vertex shaderʼs inability to delete undesired vertices
from the pipeline.

8.4. Cap Creation
As mentioned in sections 6.4, when edges are rendered thicker than a few pixels
visible gaps occur. To fill them, McGuire and Hughes created caps that render on
both sides of each drawn edge. These two half caps are triangle polygons that
meet up along the screen-space projection of the shared vertex normal. Two
extra render passes are required to create the caps: one for the v0 side and one
for the v1 side. The caps can be generated from the same edge mesh data as
the edges, but they need a different index array buffer. The cap index array buffer
needs index values that reference only the first three duplicates of each set of
edge vertices.

Unlike the half quad edge method, the caps need to be generated relative to the
normal of the vertex to which they are attached. Thus, the screen-space
projection of the n1 vector, m1, is also needed to generate the v1 cap.

44

It is created:

vec4 temp = MVP * vec4(v1.xyz + n1.xyz, 1.0);

temp.xy = (temp.xy / temp.w) * vec2(Width, Height);

m1 = normalize(temp.xy - s1.xy);

With m1 and previous screen-space values, the v0 and v1 side half caps are
generated as described by the tables below.

ID Output Vertex (v0 side cap)

i = 0 s0

i = 1 vec4((s0 + p * sign(dot(m0, p))) / vec2(Width, Height) * s0.w,
s0.zw)

i = 2 s0 + m0

ID Output Vertex (v1 side cap)

i = 0 s1

i = 1 vec4((s1 + p * sign(dot(m1, p))) / vec2(Width, Height) * s1.w,
s1.zw)

i = 2 s1 + m1

If the user decides to change the edge thickness by scaling the p vector, the m0
and m1 vectors must be scaled by the same amount. McGuire and Hughes were
careful to generate the caps in an order that causes only front-facing polygons to
occur. The author does not use back-face culling, so this detail was ignored.

Figure 8-4: Depiction of how caps are formed. The red cap is created for the v0 point. The green
caps are created for the v1 point of each drawable edge. Note that two half caps are created for
each drawable edge, even if there is no connecting edge. Caps connect along the normal,
making them seamless.

45

8.5. Problems
McGuire and Hughesʼ technique has a few major problems, two of which were
caused by the limitations of the hardware available at the time of writing. The
authorʼs research was focused on solving these problems.

Screen-Space Thickened Edges
While it is trivial to scale the thickness of the drawn edges and caps, the use of
screen-space scaling makes all edges have the same thickness no matter their
distance from the camera. This can cause artifacts and confusion about the
distance of the object. Though screen-space thickness may be desired, having a
depth-based scaling factor is beneficial for other graphical requirements.

Caps Sometimes Appear on the Wrong Side
When the screen-space projection of the vertex normals does not correspond
well to the curvature of the edge, caps can be generated on the wrong side of the
edge under certain perspectives. McGuire and Hughes suggested rendering
caps on both sides of the edge when the error is likely to occur.

High Duplication of Work
The edge detection must occur ten times for all polygon edges: four for the edge,
and two sets of three for the half caps. After an edge/cap is determined drawable,
the screen-space values must also be generated ten times. Geometry shader
usage was proposed as a solution to this problem, but the technology wasnʼt yet
available.

High GPU Memory Usage
In order to render the object normally, all of the vertex and normal information is
already on the GPU in the form of vertex buffer arrays. Not only does the edge
mesh contain four duplicates, but all of the data for each edge vertex is
duplicating information already on the GPU. This was done because of the
limitations of vertex shaders at the time. Shader access to data textures was
proposed as a solution for this problem, but the technology wasnʼt yet available.

46

9. Miscellaneous Contributions

The authorʼs research on improvements to McGuire and Hughesʼ method
proceeded along two tracks: small improvements to individual portions of the
technique, and complete replacements that take advantage of OpenCL. In this
section, the first track is detailed. The following contributions can be implemented
directly within McGuire and Hughesʼ framework.

9.1. Depth-Based Edge Thickness
In McGuire and Hughesʼ method, all edges and caps were drawn scaled along
the screen-space perpendicular vector or one of the screen-space vertex normal
vectors. Screen-space scaling gives all drawn edges the same thickness,
regardless of distance from the viewer. Additionally, edges extending into the
distance will appear to get larger the further away they reach, rather than smaller
as one might expect from a 3D scene.

Figure 9-1: The cube on the left is a few units away from the camera. The right cubeʼs front-most
edges are directly in front of the camera, but have the exact same thickness as the cubeʼs back
edges.

Even if these effects are desirable, there is one major disadvantage to this form
of scaling. As objects get further from the viewer, the objectʼs geometry will
eventually become overwhelmed by the edges.

47

Figure 9-2: This cube is far away from the camera, yet the edges remain the same pixel width,
overpowering the mesh.

To allow for more realistically scaled edges and prevent the overpowering
problem, the author proposes a depth-based scaling factor be applied to the
screen-space perpendicular and normal vectors of each edge vertex.

Naïve Method
The view-space z-coordinate represents the depth value needed to scale the
screen-space vectors realistically. With each vertex in local-space, the naïve
method to find their view-space representations uses a matrix multiplication.
Then the z-coordinates can be inverted and negated to form the depth-based
scaling factor:

depthScalingFactor = 1.0 / -(ModelViewMatrix * localSpaceVertex).z;

This depth-based scaling factor must be multiplied into each use of the screen-
space vectors during the vertex output process, as with any other scaling factors.

Optimized Method
There is a way to avoid the matrix multiplication entirely. In the process of
creating these edges, the projection-space version of v0 and v1ʼs z-coordinates
are created. The depth value at each vertex in the edge can be calculated by
multiplying the projection-space z-coordinates by the portions of the inverse
projection matrix that apply to z-coordinates.

48

The inverse projection matrix is:

In relation to the z-coordinate, the matrix multiplication operation of the inverse
projection matrix and a projection-space point becomes:

depth = 0 * (projected.x + projected.y + projected.z) + (-1 *
projected.w);

depth = -projected.w;

Thus the depth scaling factor calculation becomes:

depthScalingFactor = 1.0 / projected.w;

Where projected represents either v0 or v1 in projection-space.

Figure 9-3: The same cube as above with the depth-based scaled thick edges. Notice how each
edgeʼs thickness will scale along its length.

49

Orthographic Projection Considerations
Such a compact optimization is not available when using orthographic projection.
After applying the same rules to the inverted orthographic projection matrix, the
calculation becomes:

depthScalingFactor = -2.0 / (projected.z * (n - f) - projected.w * (n +
f));

The amount of calculation is not significantly less than accessing the value
through world-space vector multiplication with the ModelView matrix, and
requires two additional pieces of data: the near and far plane distances (n and f).

Minimum Thickness
One final improvement to the thickness modification is to cap the bottom of the
scale factor through the use of a max function. This will assure a minimum edge
thickness no matter the distance of the object.

depthScalingFactor = max(1.0, 1.0 / projected.w);

Figure 9-4: A distant cube with edges that remain visible yet do not overpower the mesh.

Edges rendered with a minimum thickness of less than one can cause flickering
and missing edges if the distance is great enough.

50

9.2. Reduce Effects of Incorrectly Projected Normals
The screen-space projection of each vertexʼs normal is used to choose the side
on which to render the caps. For some meshes viewed from certain view angles,
the projected normals will point in the wrong direction, causing caps to appear on
the wrong side of the edge. McGuire and Hughes suggested that the caps be
rendered on both sides of the edge in cases where this might occur.

Figure 9-5: The shared vertex normals (blue) of the cylinder crease edges, when viewed from this
angle, demonstrate the failure case of normal-based capping (red).

The author found that for every potential gap created at the intersection of two
drawable edges, there is exactly one “normal” vector that, when projected, would
yield a correctly placed cap. Each vertex is limited to a single normal vector
because of the restriction to only include unique edges. However, if edges are
defined not only by their location, but also by their normals, the problem can be
solved. Crease edges tend to have more than one appropriate normal, as
indicated in McGuire and Hughesʼ paper. By using a common crease splitting
operation in a 3D application, and allowing edges to be distinguished by their
normals in addition to their position, some edges are duplicated, but with
appropriate normals. This is a simple application of the proposed solution in
McGuire and Hughesʼ paper.

51

Figure 9-6: The shared vertex normals of the left cylinder generate caps that end up on the wrong
sides from some view angles. The right cylinder, which has appropriate normals for each major
section of the mesh at the cost of duplicate edges, will generate correct caps no matter the view
angle.

If the right cylinder from figure 9-6 is rendered, the output looks like Figure 9-7.
Since the edges are created without the normals, any duplicate edges could be
marked to output a degenerate edge quad. The cap creation would remain the
same. Doing this would reduce the impact of having the additional edges in the
edge mesh. Using caps on both sides for all crease edges would yield similar
results, but at the cost of additional render passes.

Figure 9-7: A second set of normals for problematic edges generates the correct output.

52

For some meshes, the problematic normals originate from a curved portion of the
mesh abutting a flat portion. When these objects are created, the vertices that
connect the curved and flat portions get blended normals, which are incorrect for
both portions (see Figure 9-6). Flat portions of meshes, as long as they are
connected at their extreme edges to a non-flat surface, should not generate
edges at all. Therefore, their normals should not influence the edge detection of
other edges. For a cylinder, the correct normals on the ends are the same as the
normals for a tube.

Figure 9-8: The tubeʼs normals create the perfect normals for a cylinder. No matter the view
angle, the normals of the flat surface were not needed to generate the correct caps.

Unfortunately, the flat to curved abutment is not the only case that will cause
problems when the normals are projected. For example, when a plane is created,
many 3D applications create the normals so that they all point upward out of the
plane. However, to generate the appropriate caps for the boundary edges of the
plane, the normals should lie on the same plane as the mesh itself, pointing
diagonally outward.

Although the author was unable to find an algorithmic solution to generate
appropriate normals for every kind of mesh at every view angle, he did find that

53

the correct cap could always be generated with enough edge duplicates or a
better normal chosen by a discerning eye.

9.3. Alternate Drawable Edge Types
The author explored several methods to reduce the amount of duplicate edge
tests and other calculations by combining multiple passes together. The resulting
new edge structures have various advantages and disadvantages over McGuire
and Hughesʼ edge/cap drawing method. All of these new edge types render
slightly faster than McGuire and Hughesʼ edges.

Half Hex Edges
Half hex edges combine the area of a half quad edge and the two half caps.
They form a hexagon shaped edge on the “outside” of the mesh out of two
quads. This combination eliminates one whole render pass, and reduces the
number of output vertices needed by two.

Figure 9-9: McGuire and Hughesʼ edge and two half caps setup (top) compared to a half hex
edge (bottom). The blue arrows represent the vertex normals for the black edge. The half hex
edge combines the caps into the edge, but is only rendered on the “outside” of the mesh.

The area in half hex edges, as with other other alternate edges, can be split into
quads in multiple ways. For the sake of simplicity, only the split method displayed
in the figure above will be used to describe the output vertices.

54

ID Output Vertex (green side)

i = 0 s0

i = 1 s1

i = 2 vec4((s0.xy + p.xy * sign(dot(m0, p))) / vec2(Width, Height) *
s0.w, s0.zw)

i = 3 vec4((s0.xy + m0.xy) / vec2(Width, Height) * s0.w, s0.zw)

ID Output Vertex (red side)

i = 0 vec4((s0.xy + p.xy * sign(dot(m0, p))) / vec2(Width, Height) *
s0.w, s0.zw)

i = 1 s1

i = 2 vec4((s1.xy + m1.xy) / vec2(Width, Height) * s1.w, s1.zw)

i = 3 vec4((s1.xy + p.xy * sign(dot(m0, p))) / vec2(Width, Height) *
s1.w, s1.zw)

Half hex edges only render on the side of the m0 vector. Thus they are only
suitable for use with contour edges. Noticeable edge flipping occurs if they are
used for other types of drawable edges.

House Edges
House edges are named for their silhouette. They have a large base that extends
above and below the polygon edge, and a “roof” that sits on top of the base.
House edges require two new vertices not seen in other drawn edge types. They
are the intersections of a line and two vectors. A special perpendicular vector is
required for these calculations:

pAlt = p * sign(dot(p, m0));

The line is defined by two points:

innerS0 = s0 + pAlt;

innerS1 = s1 + pAlt;

55

The two vectors are two instances of the altered perpendicular vector, with
origins at each of the screen-space normal offset vertices:

pOriginPoint0 = s0 + m0;

pOriginPoint1 = s1 + m1;

The two additional vertices are calculated using the standard 2D intersection
formula between vectors and a line. The other four vertices are calculated as in
other techniques. They include: s0 offset by m0, s1 offset by m1, s1 offset by the
“outward” p vector, and s0 offset by the “outward” p vector. See Figure 9-10 for a
visual depiction of a house edge.

Figure 9-10: The house edge extends downward from the normal-offset points until the bottom of
the inside edge is reached. This type of drawn edge covers much more area than other types.

The house edge generates very bad artifacts at even remotely sharp connecting
edges. The extra area on the underside makes the problem of thick edges
passing through nearby geometry even worse. This type of edge is not
recommended for use in any circumstance, despite its slightly higher speed
compared to McGuire and Hughesʼ method.

Plug Edges
Plug edges, also named for their silhouette, combine the good qualities of half
hex and the house methods. It uses only two passes, generates area on both
sides of the edge, and doesnʼt create too much extra area. It also creates only
output vertices used in McGuire and Hughesʼ edges, so the terrible artifacts of
the house method are non-existent.

56

Figure 9-11: The plug edge takes the idea of the house edge, but simplifies it so that the points at
the bottom match up with the actual extended edge point (vertex - perpendicular). This edge
method generates a lot less area than the house edge, but retains the edge/cap combination.

Plug edges can be used for crease and boundary edges, while half hex edges
can handle the contours. This combination generates quality roughly equivalent
to McGuire and Hughesʼ edge/caps, but with the speed advantage of only two
passes per mesh.

57

10. Non-Duplicate Parallel Edge Detection and Capping

After researching and implementing McGuire and Hughesʼ method, the author
focused on improving it. The most extensive research focused on finding a
replacement technique that would take advantage of the new capabilities of
OpenCL. The main alternative technique discovered is called non-duplicate
parallel edge detection and capping.

OpenCL (Open Computing Language) is a framework for doing general
computation on a wide variety of hardware. Itʼs primary focus is to unlock the
massively parallel computational power of modern GPUs for non-graphical
applications. It also offers buffer interoperability with OpenGL (Open Graphics
Library). The author discovered that these features lend themselves well to
object-space edge detection. It single-handedly replaces the two future
technologies mentioned in McGuire and Hughesʼ paper as ways to improve their
method: geometry shaders and data texture lookup. Simultaneously, it provides a
way to create more accurate caps by eliminating the problem of inappropriate
normal projection.

10.1. Method Overview
OpenCL allows the reading and writing of OpenGL vertex buffers. This means
that the geometric and connectivity data need not be sent to the OpenCL context
every frame. It can be generated during a preprocessing step and then
transferred to the GPUʼs buffers, just as McGuire and Hughes did. Unfortunately,
OpenCL does not support rendering commands, so detection and rendering must
be separate steps.

Since all vertex buffers on the GPU are theoretically available to an OpenCL
program (called a kernel), duplicate vertex information is not needed. The kernel
can make use of the meshʼs vertices already on the GPU. The only additional
buffer needed for edge detection is the vertex connectivity information in the form
of vertex indices. By not repeating 3D vertex information, the amount of extra

58

data required to detect edges is significantly lower than in McGuire and Hughesʼ
method.

Once the data is retrieved, the edge detecting step is largely the same as in
McGuire and Hughesʼ method, with two exceptions: edge detection and edge
value generation occurs once per edge, and the output vertices are stored to an
output buffer rather than being rendered directly.

The caps, on the other hand, are created completely differently from McGuire
and Hughesʼ method. The cap creation kernel uses output data from the edge
detecting step to completely skip the edge detection step in each cap. Normals
are not used in the creation process, so caps no longer appear on the wrong side
of the edge under any circumstance.

Edges and caps both require one calculation pass. Then three very simple
rendering passes render the mesh, edges, and caps. The details of the
implementation are below.

10.2. Data Structure
A large amount of preprocessing is required to arrange a meshʼs polygon edges
into the edge and cap meshes. The edge mesh is similar to the one generated
for McGuire and Hughesʼ method, except that only the connectivity information is
needed in the form of indices. Only one set of indices are need per edge, rather
than four in McGuire and Hughesʼ method.

The cap mesh, however, indexes into the edge mesh. A cap vertex in the cap
mesh contains a reference to the two connecting edges. Since all edges output a
quad, even if degenerate, it is trivial to obtain information about each edgeʼs state
of drawability.

First, all triangles in the mesh are processed to generate a list of unique edges
with associated adjacent points. Since indices are being used instead of the
actual data, each edge vertex contains:

• Edge vertex index 0 (indexes the vertex buffer)

• Edge vertex index 1 (indexes the vertex buffer)

59

• Adjacent vertex index 0 (indexes the vertex buffer)

• Adjacent vertex index 1 (indexes the vertex buffer)

All of these edge vertices together represent the edge buffer. These indices refer
to the vertex buffer for the mesh, and could also be used to access the normals.
As with McGuire and Hughesʼ method, if the adjacent vertex index 1 does not
exist because the edge is a boundary edge, it is set equal to edge vertex index 0.

Another buffer, the edge out buffer, needs to be created with enough space to
contain the set of four potential projection-space output vertices for each edge in
the edge buffer. The buffer must have room for 4E four dimensional vertices,
where E is the number of edges in the edge buffer. This buffer will hold the quad
representations of the drawable edges for the dual purpose of rendering edges
and defining which caps should be drawn.

Then the cap buffer should be created, using the edge and vertex buffersʼ
indices. Each cap vertex contains:

• Edge index 0 (indexes the edge buffer)

• Edge index 1 (indexes the edge buffer)

As with the edge buffer, the cap buffer needs a corresponding cap out buffer to
store its sets of projection-space vertices for later rendering. Since these caps
will be made of quads, the buffer must be able to store 4C four dimensional
vertices, where C is the number of caps in the cap buffer.

Once all these buffers have been created, and the two input buffers populated,
they should be sent to the graphics card in preparation for edge detection and
rendering. Refer to Figure 10-1 for a depiction of the buffersʼ relationships.

60

Trivial set of connected
polygons in 2D space

V[1] V[3]

V[2]V[0]

Vertex BufferVertex Buffer

Data ID

(1.0, 1.0) V[0]

(1.0, 2.0) V[1]

(2.0, 1.0) V[2]

(2.0, 2.0) V[3]
Cap BufferCap Buffer

Data ID

E[0, 2] C[0]

E[0, 1] C[1]

E[0, 3] C[2]

E[1, 3] C[3]

E[1, 2] C[4]

E[1, 4] C[5]

E[2, 4] C[6]

E[3, 4] C[7]

Edge BufferEdge Buffer

Data ID

V[0, 1, 2, 0] E[0]

V[1, 2, 0, 3] E[1]

V[0, 2, 1, 0] E[2]

V[1, 3, 2, 1] E[3]

V[2, 3, 1, 2] E[4]

Offset

ReferenceOutput

Edge Out BufferEdge Out Buffer

Data ID

[VERTICES] O[0]

[VERTICES] O[1]

[VERTICES] O[2]

[VERTICES] O[3]

[VERTICES] O[4]

Cap Out BufferCap Out Buffer

Data ID

[VERTICES] O2[0]

[VERTICES] O2[1]

[VERTICES] O2[2]

[VERTICES] O2[3]

[VERTICES] O2[4]

[VERTICES] O2[5]

[VERTICES] O2[6]

[VERTICES] O2[7]

Output

Figure 10-1: For a trivial set of polygon edges (top), the vertex buffer is used with the index buffer
(not shown) to draw the mesh normally. The edge vertices (edge out buffer) are calculated using
the edge buffer which contains vertex connectivity information referring to indices of the vertex
buffer. The edge connectivity information (the two edge buffer indices in the cap buffer) are used
to offset index into the edge out buffer where drawability is easily determined. If the cap should be
drawn, the cap out buffer is filled with cap vertices by using the cap bufferʼs two edge buffer
references to determine the point of contact and how to draw the cap.

10.3. OpenCL Notes
OpenCL can only access OpenGL buffers if the context of OpenCL is initialized
with OpenGLʼs context. Obtaining the OpenGL context is implementation-
specific. Once obtained, all OpenGL buffers in the context can be read freely. In
order to write to them, however, OpenCL must acquire or lock those buffers prior

61

to operating on them. In order for OpenGL to regain the ability to render from
those buffers, they must be released from OpenCL.

Additionally, non-texture buffer access of OpenGL buffers by OpenCL use the
uncached global GPU memory. This memory access is very slow, so optimization
is very important to achieving good results. Accessing several values of adjacent
global memory should be done via the vector load and store functions. This
reduces the overall memory calls significantly. Functions for manual data caching
can alleviate most memory access speed issues, though some algorithms do not
lend themselves well to their use.

Several other OpenCL specifics affect speed. Data transfer from the CPU to the
GPU is very costly and should be avoided as much as possible. Doing a high
number of calculations in OpenCL is required to offset the speed loss of the
transfer. If the data is already on the graphics card, and the results of the
calculation remains on the graphics card, as with the authorʼs algorithm, this
transfer penalty is not felt.

Having logical forks (if statements) in a kernel slows down the processing of all
threads, because code in the kernels are executed in lock-step. If one set of
threads enters the if statement, all the threads that would enter the else
statement are blocked until the other threads are finished with their if statement
code.

10.4. Edge Detection and Creation
When the user activates the OpenCL edge detection kernel, the user supplies the
number of threads it will perform. That quantity should be the number of edges in
the edge buffer. While running, each threadʼs kernel has the ability to ask for itʼs
ID within all threads. This ID is used as the index for the edge buffer.

In addition to the kernel ID, the edge detection kernel requires references to the
vertex, edge, and edge out buffers and copies of the ModelViewProjection matrix,
the camera position, and the viewport width and height. The four vertex buffer
indices obtained from the edge buffer are then used to obtain the vertices

62

necessary for edge detection: the two vertices defining the edge, and the vertices
defining the adjacent points on the two connected polygons. This information is
exactly the information available to McGuire and Hughesʼ shaders at the time of
edge drawability testing.

The actual edge detection steps are exactly the same as those in McGuire and
Hughesʼ method, with the minor exception that boundary and marked edges can
be checked for drawability using index comparisons instead of vertex
comparisons. Check section 8.2 for the details.

For edges that are drawable, the kernel should generate the screen-space
values necessary to generate the quad edge and then send those four vertices to
the edge out buffer. These values should be exported in projection-space, just as
the vertices were output from McGuire and Hughesʼ vertex shaders. At this point,
all four vertices can be generated in one step, preventing a lot of duplicate
computations. As with detection, the edge creation process is identical to that of
McGuire and Hughesʼ method (section 8.3). For edges that are non-drawable, a
degenerate quad made up of the vertex (0, 0, -1, 1) should be sent to the edge
out buffer.

With the edge detection step complete, the edge out buffer contains sequential
quad vertices that define the drawable edges. Non-drawable edges have
degenerate quad entries that will be clipped during the rendering process.

10.5. Cap Detection and Creation
Cap detection is a completely new operation. In McGuire and Hughesʼ method,
two half caps were created on each side of every drawable edge. Since the cap
buffer provides the connectivity information of every possible combination of
connecting edges, the caps can be generated more accurately.

Like the edge detection step, the cap kernel will need some of the same
resources including, but not limited to: references to the edge, edge out, cap, and
cap out buffers and a copy of the viewport width and height. The number of cap
kernel operations should be equal to the number of entries in the cap buffer. The

63

cap kernel supplies an ID that can be used to index into the input and output
buffers, as was done in the edge detection kernel.

Each vertex in the cap buffer contains indexes to the two connecting edges of
each cap. The cap data can be used to obtain the indices of the two edges, and
those can be used to obtain the original edge vertices. Then a typical edge test
could be performed to determine the drawability of both of the edges. However,
itʼs more efficient to use the recently populated edge out buffer to determine the
drawability state of both of the connecting edges.

All non-drawable edges generate a degenerate quad made of the vertex (0, 0, -1,
1) in the edge out buffer. Using the indices of the connecting edges, the kernel
can obtain the first output vertex of each connecting edge. If both of these output
vertices are not equal to the degenerate vertex, they are both drawable and the
cap should be created at the connecting vertex. If only one or neither of them are
drawable, then no cap should be created. Instead, a degenerate quad made of
the vertex (0, 0, -1, 1) should be stored in the cap out buffer. Alternatively, the
vector comparison could be simplified by building the output vertices for
degenerate edges from (NAN, 0, -1, 1). This reduces the drawability test to a
single value check for equivalence with NAN (or Not A Number).

If the cap is drawable, the kernel must determine the order of the edges so that
the relative position of the connecting point and the two outer points are known.
The order can be checked by comparing the relative values for each edge
indexʼs vertex indices. Then, using the projection-space vertices in the edge out
buffer, the screen-space vertices of the edge quads can be calculated. The
calculation is done the same way the edgesʼ vertices were sent to screen-space:
homogeneous division and scaling by the viewport width and height.

After all the vertices are ordered and in screen-space, three screen-space
vertices need to be determined:

• sL - the vertex on “left” edge that is not the connection vertex

• sM - the connecting vertex

• sR - the vertex on the “right” edge that is not the connection vertex

64

Using the vectors along the edges, the “middle vector” needs to be determined.
This vector lies on the same plane as, and points away from, the two edges. The
middle vector will be used to generate the connecting point that was previously
obtained from vertex normals.

It is calculated:

middleVector.xy = -normalize(normalize(sL.xy - sM.xy) + normalize(sR.xy
- sM.xy));

The perpendicular vector for both edges are needed for the rest of the
calculation. The “left” edgeʼs perpendicular vector will be referred to as p0, and
the other, p1. They are obtained:

p0 = normalize((float2)(sL.y - sM.y, sM.x - sL.x));

p1 = normalize((float2)(sR.y - sM.y, sM.x - sR.x));

They need to be modified to point in the same direction as the middle vector (less
than 90 degrees of angular separation). This modification is accomplished via the
operations below:

p0 = p0 * sign(dot(p0, middleVector));

p1 = p1 * sign(dot(p1, middleVector));

After all these values have been generated, the output vertices for the drawable
caps can be sent to the cap out buffer. The vertices of the cap are listed in the
table below.

Vertex Calculation
0 (float4)((sM.xy + middleVector) / sM.w * (float2)

(ScreenWidth, ScreenHeight), sM.zw)

1 (float4)((sM.xy + p0) / sM.w * (float2)(ScreenWidth,
ScreenHeight), sM.zw)

2 (float4)(sM.xy / sM.w * (float2)(ScreenWidth, ScreenHeight),
sM.zw)

3 (float4)((sM.xy + p1) / sM.w * (float2)(ScreenWidth,
ScreenHeight), sM.zw)

65

Since the capʼs creation is based on the connected edges rather than the normal,
the normalʼs orientation is irrelevant to the position of the cap. The cap also
always perfectly fills the gap created between the two edges, no matter how the
two edges are oriented.

An alternative method of obtaining the p0 and p1 vectors is to look them up in the
set of already determined points from the edge quad. The p vectors must still
point in the direction of the middle vector, however.

Figure 10-2: The green caps are generated without the use of the normal, and always perfectly fill
the gap between the two edges because they are created utilizing the vertices of both edges.

If half quad edges were used when creating the edge quads, there is no longer a
trivial solution for exactly where the cap should be placed. There are many
possible combinations of half and full quads, as orientation relative to the line and
the bend of the connection is relevant. Though the correct cap output can
eventually be calculated, there is no known elegant solution to determining
exactly when and where.

10.6. Rendering
All edge and cap vertices were output from their respective kernels in projection-
space, the output format of vertex shaders. Thus, the vertex shader for the edges

66

and caps must only pass the vertex through directly, with no additional
processing. The vertex shader is displayed below.

void main() { gl_Position = gl_Vertex; }

The complete render process consists of rendering the mesh normally, with a
slight backwards offset, then rendering the edges and caps as ordered quad
arrays. Because OpenCL can interoperate with OpenGLʼs buffers, no edge, cap,
or vertex data is sent to or retrieved from the GPU during each frame.

67

11. Comparative Analysis

Having implemented McGuire and Hughesʼ method and an unoptimized version
of the authorʼs method, non-duplicate parallel edge detection and capping, the
author was surprised to find that his technique was vastly slower than McGuire
and Hughesʼ.

The author researched the reason for this discrepancy. In order to be assured
that it was not an algorithmic issue, the author reimplemented both methods on
the CPU, as memory access speed was suspected as the main cause at the
time.

The CPU implementations yielded better results, with the authorʼs method
running approximately four times faster than McGuire and Hughesʼ method for
complex meshes, as expected. Of course, the faster speed of the authorʼs
algorithm on the CPU was not faster than McGuire and Hughesʼ method on the
GPU.

Next, the author wrote an optimized version of his method in OpenCL, taking full
advantage of vector loads and stores. Though it led to a significant speedup over
the unoptimized version, it remained slower than McGuire and Hughesʼ method.
The sheer number of caps to check and the lack of short-circuiting in non-
drawable caps was suspected for the speed problems.

The author then implemented McGuire and Hughesʼ capping method using
OpenCL so that edges and caps would be created in a single pass, with one
thread per edge. This led to a dramatic speedup, but except for very complex
meshes, it was still slower than the algorithm implemented on the shader. At this
point, the suspected bottleneck was the lack of memory caching.

Dr. Xin Li [Li 10] suggested a system to reduce the total number of caps
considered. In the process of generating the edge out buffer, a secondary buffer
was generated containing only the values one and zero depending on the
drawability of that edge. Next, a kernel would simultaneously transform the
values equal to one into their edge index value and shuffle them toward the front

68

of a drawable edges list. After the shuffling was completed, the quantity value of
drawable edges was returned to the CPU. The next kernel acted only on the front
of the drawable edge list, only processing drawable edges. This kernel generated
a valid cap list, where each combination of edges were both connecting and
drawable. Another shuffling step shifted all the valid caps to the front of their list
and returned the total quantity. Finally, the cap kernel could be run just on valid
caps, removing the need to process caps that wouldnʼt be drawn.

This implementation only reached the framework stage. At that time, it was
discovered that, even with the reduction in caps processed, the cost of returning
data from the GPU slowed the algorithm down too much to be seriously
considered as a solution.

Thus, the author found several methods to implement object-space edge
detection using OpenCL, but thus far, none are quite as fast as McGuire and
Hughesʼ method. However, the authorʼs method still retains one advantage over
McGuire and Hughesʼ method: the more accurate cap placement. Implementing
McGuire and Hughesʼ algorithm in OpenCL also significantly reduces the
memory usage compared to the shader version.

In this section, the operation quantity, memory access, memory usage, rendering
quantity, and overall speed will be compared in the important variations listed
above. The section concludes with a description of the various factors that
contribute to the overall lower speed of the authorʼs methods. Section 13
contains a few additional suggestions that might lead to further improvements.

11.1. Operation Quantities
In the following two charts, the author displays information on the number of
various operations performed in the process of creating edges and caps. These
figures are divided further into best/worst case (non-drawable/drawable)
scenarios and M&H/Ar (McGuire and Hughesʼ/authorʼs) methods. These
quantities were counted during the CPU implementation. Though other types of
implementations will have more or less than these exact quantities, the important

69

factor is the magnitude of the difference between them, which will not
significantly change.

Figure 11-1: This chart shows the relative quantity of different types of mathematical operations
used by both methods under different conditions. The authorʼs method has fewer operations
overall due to lack of duplication and test optimizations. Smaller is better.

Ar - Edge (worst)

M&H - Edge (worst)

Ar - Cap (worst)

M&H - Cap (worst)

Ar - Edge (best)

M&H - Edge (best)

Ar - Cap (best)

M&H - Cap (best)

0 100 200 300

9

0

12

3

15

5

16

4

9

0

12

0

48

18

56

14

90

3

120

31

291

83

272

81

99

3

132

36

243

62

248

59

Mathematical Operation Quantities

Add/Sub Multiply Division Square Root

70

Figure 11-2: This is a comparison of the number of logical forks (if statements), comparison
operations, and typecasts (vector types) used by each method under different conditions. The
authorʼs method has fewer operations overall due to lack of duplication and test optimizations.
Smaller is better.

Ar - Edge (worst)

M&H - Edge (worst)

Ar - Cap (worst)

M&H - Cap (worst)

Ar - Edge (best)

M&H - Edge (best)

Ar - Cap (best)

M&H - Cap (best)

0 10 20 30 40 50

0

0

0

0

12

9

12

9

21

9

28

7

33

14

44

9

12

1

16

4

24

6

36

7

Logical/Other Operations

Logic Forks Comparison Typecast

71

The following table shows the ratio comparisons of the two methods. While the
quantities of all operations were reduced in the authorʼs method, many of them
are from the simple elimination of duplication. Those ratios that represent an
operation reduction of greater than four times are displayed with a green cell.
Smaller is better.

Edge Ratio
Ar : M&H

Worst Case

Cap Ratio
Ar : M&H

Worst Case

Edge Ratio
Ar : M&H

Best Case

Cap Ratio
Ar : M&H

Best Case
Add/Sub 0.238 0.255 0.272 0.03
Multiply 0.298 0.285 0.258 0.033
Division 0.25 0.375 0 0
Square Root 0.25 0.333 0.25 0
Logic Forks 0.194 0.25 0.25 0.083
Comparisons 0.205 0.424 0.25 0.429
Typecasts 0.75 0.75 N/A N/A

11.2. Memory
In this section, GPU memory accesses and usage is compared for edges and
caps.

Memory Access
As previously mentioned, memory access speeds are significantly different for
shaders and OpenCL. Shaders get their memory access in a cached form, which
makes them significantly faster than access to global memory in OpenCL.

Because the shader memory access is ordered and cached, the number of
memory reads and writes are essentially irrelevant to the final speed. In OpenCL,
however the number and type of memory accesses is significant. Using vector
loads and stores, the number of reads for both edges and caps is five. The
number of writes is one for both edges and caps. Edges and caps have no best
or worst case in terms of memory access. They always access the same amount
of global GPU memory.

In McGuire and Hughesʼ method, output data is sent directly into the pipeline for
rendering. The authorʼs method, on the other hand, must store those values to a

72

buffer for later rendering. This is why both edges and caps must write some data
to memory.

If the McGuire and Hughesʼ method of capping is implemented in OpenCL, a
single kernel creates both the edge and the two end caps. This edge/cap
combination uses seven global memory reads and three memory writes.

Memory Usage
Calculating the total memory footprint of both edges and caps is dependent on
the number of possible edges and caps, the view direction, and the type of mesh
in question. So, several tables are needed to illustrate the conclusions found.

The first table describes the number of bits used by individual edges and caps in
both methods. The caps of McGuire and Hughesʼ method uses only a small
amount of memory relative to the edges because they make use of the edge
data. There is also some memory used by the GLSL edges and caps not
mentioned here, because it is transparently created and destroyed by the
graphics pipeline. 32-bit float and integer types were assumed.

Memory Usage Per Item
Ar Edge 640 bits
M&H Edge 2688 bits
Ar Cap 576 bits

M&H Cap 96 bits

73

Then, for a sample of objects, the next table compares the number of edges and
caps used by both methods.

Edges
(Ar & M&H)

Caps
(Ar)

Caps
(M&H)

Cap:Edge
Ratio (Ar)

Cap:Edge
Ratio (M&H)

Cube 24 24 48 1 2
Merged Cube 12 24 24 2 2
Cylinder 96 320 192 3.33 2
Merged
Cylinder

96 192 192 2 2

Cone 64 592 128 9.25 2
Quad Sphere 2016 6944 4032 3.44 2
Ico Sphere 1920 9570 3840 4.98 2
Teapot 1180 4420 2360 3.75 2
Monkey 1449 7188 2898 4.96 2
Bunny 20812 107290 41624 5.16 2

The number of caps to edges in McGuire and Hughesʼ method is always two
because there are two half caps drawn for each edge, one on each side. For
most meshes, the authorʼs method will have far more caps because it handles
every possible case.

Combining the information of the previous two tables, the number of bits needed
by each type of objectʼs edges and caps can be determined. They are displayed
in the next table. Values are in bits.

Edges (Ar) Edges (M&H) Caps (Ar) Caps (M&H)
Cube 15360 64512 13824 4608
Merged Cube 7680 32256 13824 2304
Cylinder 61440 258048 184320 18432
Merged
Cylinder

61440 258048 110592 18432

Cone 40960 172032 340992 12288
Quad Sphere 1290240 5419008 3999744 387072
Ico Sphere 1228800 5160960 5512320 368640
Teapot 755200 3171840 2545920 226560
Monkey 927360 3894912 4140288 278208
Bunny 13319680 55942656 61799040 3995904

74

Totaling all memory used by the edges and caps for each type of object under
each method, the memory ratios illustrate that under the current system, most
meshes use about the same memory in both methods. There are a few meshes
that, under the authorʼs method, have better memory usage (green), and one, the
cone, with terrible memory usage (red). The coneʼs high memory usage comes
from the high numbers of caps that occur at the tip where most of the edges
come together, a worst-case scenario for the authorʼs method. Non-ratio values
are in bits.

Total Ar Memory Total M&H Memory Memory Ratio
(Ar : M&H)

Cube 29184 69120 0.422
Merged Cube 21504 34560 0.622
Cylinder 245760 276480 0.888
Merged Cylinder 172032 276480 0.622
Cone 381952 184320 2.07
Quad Sphere 5289984 5806080 0.911
Ico Sphere 6741120 5529600 1.21
Teapot 3301120 3398400 0.971
Monkey 5067648 4173120 1.21
Bunny 75118720 59938560 1.25

75

If McGuire and Hughesʼ method is implemented in OpenCL, the memory usage
looks much different, with each mesh using just over half the memory of the
equivalent shader version. This is possible because each cap uses 64 fewer bits
of memory than the authorʼs method caps and there are only two caps per edge.
The table below illustrates the change.

M&H
(OpenCL)

M&H
(Shader)

Memory Ratio
(OpenCL:Shader)

Cube 39936 69120 0.577
Merged Cube 19968 34560 0.577
Cylinder 159744 276480 0.577
Merged Cylinder 159744 276480 0.577
Cone 106496 184320 0.577
Quad Sphere 3354624 5806080 0.577
Ico Sphere 3194880 5529600 0.577
Teapot 1963520 3398400 0.577
Monkey 2411136 4173120 0.577
Bunny 34631168 59938560 0.577

76

11.3. Rendered Output
Regardless of the detection and creation speed, the number of edges and caps
drawn will also influence the speed. At a given view direction, the same number
of edges will be generated by both methods. However, the number of drawn caps
is significantly different. In McGuire and Hughesʼ method, the number of caps
drawn is always two times the number of edges. The authorʼs method, though
more varied, consistently generates fewer caps than McGuire and Hughesʼ
method (green). These numbers were calculated with the camera pointing at the
origin and positioned at (3, 3, 3) in world-space. The meshes were at the origin,
with a scale size of approximately one.

Edges
(Ar & M&H)

Caps
(Ar)

Caps
(M&H)

Cap:Edge
Ratio (Ar)

Cap:Edge
Ratio (M&H)

Cube 24 24 48 1 2
Merged Cube 12 24 24 2 2
Cylinder 130 136 260 1.04 2
Merged Cylinder 66 72 132 1.09 2
Cone 34 37 68 1.09 2
Quad Sphere 72 72 144 1 2
Ico Sphere 55 55 110 1 2
Teapot 205 228 410 1.11 2
Monkey 345 488 690 1.41 2
Bunny 1175 1397 2350 1.19 2

Using McGuire and Hughesʼ capping method with OpenCL, the number of drawn
caps will be the same as in the shader implementation, making the cap/edge
ratio for all meshes two.

11.4. Speed
The rendering speed for each type of mesh is significantly varied for different
architectures and algorithms. The metric used to determine speed was the
overall framerate with edges, caps, and the mesh being rendered each frame.
Below are the results and comparisons of three setups: CPU implementation of

77

both algorithms, GPU implementation of both algorithms, and McGuire and
Hughesʼ implementation in both OpenCL and shaders.

CPU Implementation
The CPU implementations have equivalent memory access speeds for both
methods. Being linear, they can also take advantage of short-circuiting. In this
setup, the authorʼs method has the distinct advantage for complex meshes
because it does significantly fewer operations. It also gains the similar memory
access speeds and short-circuiting, which are not available in OpenCL.

Framerate (Ar) Framerate (M&H) Ratio (Ar : M&H)
Cube 1135 1156 0.982
Merged Cube 1155 1180 0.979
Cylinder 1139 1182 0.964
Merged Cylinder 1126 1128 0.998
Cone 1276 1338 0.954
Quad Sphere 679 144 4.715
Ico Sphere 631 155 4.071
Teapot 906 226 4.009
Monkey 602 176 3.42
Bunny 54 14 3.857

78

GPU Implementation
Next, the optimized OpenCL version of the authorʼs method is compared to the
shader version of McGuire and Hughesʼ method. As described earlier, the
reduction in total processing is less meaningful with slower memory access and a
lack of short-circuiting. The shaderʼs advantages allow McGuire and Hughesʼ
algorithm to consistently achieve higher speeds than the authorʼs algorithm.
Further, some framerates for the OpenCL version of the authorʼs method are
actually slower on the GPU than on the CPU.

Framerate (Ar) Framerate (M&H) Ratio (Ar : M&H)
Cube 760 1173 0.647
Merged Cube 768 1184 0.648
Cylinder 733 1103 0.664
Merged Cylinder 741 1142 0.648
Cone 724 1244 0.581
Quad Sphere 416 713 0.583
Ico Sphere 360 739 0.487
Teapot 464 850 0.545
Monkey 334 770 0.433
Bunny 31 134 0.231

79

McGuire and Hughesʼ Cap Method on both OpenCL and Shaders
Finally, McGuire and Hughesʼ cap algorithm usage is compared in both OpenCL
and shaders. Only for the most complex of meshes does the OpenCL method
beat out the shader version in terms of speed. In the table below, “CL” refers to
the OpenCL version, and “GLSL” refers to the shader version.

Framerate (CL) Framerate (GLSL) Ratio (CL : GLSL)
Cube 762 1173 0.649
Merged Cube 770 1184 0.65
Cylinder 735 1103 0.666
Merged Cylinder 749 1142 0.655
Cone 670 1244 0.538
Quad Sphere 584 713 0.819
Ico Sphere 593 739 0.802
Teapot 631 850 0.742
Monkey 634 770 0.823
Bunny 159 134 1.18

80

12. Conclusion

The depth-based edge thickness scaling factor provides more realistic edge
shapes and reduces artifacts at almost no additional cost. Badly oriented normals
can be prevented using duplicate edges for crease edges. For some meshes,
with observation and testing, duplicate edges can be avoided by determining
which normals to use and which to ignore. The plug and half hex methods of
edge creation can be used to reduce the number of render passes by one, while
retaining approximately the same quality as McGuire and Hughesʼ method of
edge and cap creation.

The authorʼs method of capping, while initially showing promise in terms of
speed, only has an advantage in terms of accuracy. OpenCL memory access
speeds and a few other implementation issues severely limit its practicality for
object-space edge detection. Only for very complex meshes can it be made to
run faster than an equivalent shader implementation. Future improvements to
OpenCL may eventually allow it to run at equivalent or faster speeds than
McGuire and Hughesʼ shader-based method.

81

13. Future Work

McGuire and Hughesʼ paper mentions the use of geometry shaders and data
texture access as a method to reduce the amount of duplicate information and
calculations. These technologies are now commonly available. They might also
be considered as a non-OpenCL method of implementing the authorʼs method of
capping.

If GPU data indexing is not used by the OpenCL implementation of McGuire and
Hughesʼ method, the vertex and normal data would be duplicated once in edge-
specific buffers. In that case, the data would be ordered and OpenCL could take
advantage of manual data caching. This would solve the memory access speed
problem at the cost of additional memory usage, but it is not known if this alone
would be enough to surpass the shader implementation in terms of speed.

Microsoftʼs DirectCompute shaders have many of the same abilities as OpenCL
and any of the discussed methods could be implemented using that technology.
One advantage it has over OpenCL is the ability to export calculations to the
graphics pipeline. This will allow the edge and cap rendering passes to be
integrated into the computation passes. That ability to skip two render passes
could speed up the framerate slightly.

Chris Peters [Peters 10] suggested a capping method that preprocessed edges
so that both ends contain a “next” index. The next index points to an adjacent
edge connected to the same end point on a triangle. After doing the edge
compute pass, each drawable edge would be operated on twice, once for each
end. At each end of each drawable edge, the next index would be used to check
the next edge for its drawability. If it is drawable, a cap is formed between those
two edges. If it is not drawable, the next index of the second edge is checked,
and so on, until either a drawable edge is found, or the original edge is reached.
If a drawable edge connects to no drawable edges, no cap is drawn. This system
should theoretically give the same accuracy caps as the authorʼs capping
method, but without needing to store or check every possible combination. The

82

worst case number of memory accesses is C + 1 + DATA, where C is the number
of connecting edges and DATA is the other drawable edgeʼs data needed to form
the cap. This technique would still use uncached GPU memory, but requires
vastly fewer memory accesses. It could potentially lead to faster speeds for more
complex meshes.

83

Work Cited

[Binge Gamer 08] Ōkami screenshot. Ōkami (Wii). 2008.
Developed by Ready at Dawn. Published by
Capcom. http://www.bingegamer.net/2008/28-
new-okami-wii-screenshots/.

[Bosch 06] Bosch, Marc ten. 2006. “Real-Time Hardware-
Determined Feature Edges.” http://
www.marctenbosch.com/npr_edges/.

[Buchanan and Sousa 00] Buchanan, John W., and Mario C. Sousa. 2000.
“The edge buffer: A data structure for easy
silhouette rendering.” ftp://ftp.cs.ualberta.ca/
pub/juancho/edge.pdf.

[Card and Mitchell 02] Card, Drew and Jason L. Mitchell. 2002. "Non-
Photorealistic Rendering with Pixel and Vertex
Shaders." http://developer.amd.com/media/
gpu_assets/ShaderX_NPR.pdf.

[Decaudin 96] Decaudin, Philippe. 1996. "Cartoon-Looking
Rendering of 3D-Scenes." http://
www.antisphere.com/Research/Publis/
RR-2919-en.pdf.

[Evans 03] Evans, Christopher. 2003. “Thick Lines for Real-
Time Cel Shading.” http://
www.chrisevans3d.com/tutorials/cel_lines/.

[Evans 03] Bomb image. Evans, Christopher. 2003. “Thick
Lines for Real-Time Cel Shading.” http://
www.chrisevans3d.com/tutorials/cel_lines/.

[Gooch and Gooch 01] Gooch, Bruce and Amy Gooch. 2001. “Feature
Edges: Silhouettes, Boundaries, and Creases”
and “Automatic Systems: Illustration (Artistic
Line Drawing).” In Non-Photorealistic
Rendering. 117-159. A K Peters, Ltd.

[Gooch et al. 99] Gooch, Bruce, Peter-Pike J. Sloan, Amy Gooch,
Peter Shirley, and Richard Riesenfeld. 1999.
“Interactive Technical Illustration.” http://
www.ppsloan.org/publications/iti99.pdf.

84

[Hall 03] Hall, Tom. 2003. “Silhouette Tracking.” http://
www.bytegeistsoftware.com/various/
SilhouetteTracking.pdf.

[Hertzmann 99] Hertzmann, Aaron. 1999. "Introduction to 3D
Non-Photorealistic Rendering: Silhouettes and
Outlines." http://citeseerx.ist.psu.edu/viewdoc/
download?
doi=10.1.1.93.9731&rep=rep1&type=pdf.

[Hertzmann and Zorin 00] Hertzmann, Aaron, and Denis Zorin. 2000.
“Illustrating smooth surfaces.” http://
mrl.nyu.edu/~dzorin/papers/
hertzmann2000iss.pdf.

[HIPR 00] Hypermedia Image Processing Reference
(HIPR). Robert Fisher, Simon Perkins, Ashley
Walker, and Erik Wolfart. 2000. http://
homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/
roberts.htm.

[Kroon 09] Kroon, Dirk-Jan. 2009. "Numerical Optimization
Of Kernel Based Image Derivatives." http://
www.k-zone.nl/Kroon_DerivativePaper.pdf.

[Lander 01] Lander, Jeff. 2001. “Images from deep in the
programmer's cave.” Game Developer. May.
23-28.

[Li 10] Li, Xin. 2010. Personal Communication.

[Markosian et al. 97] Markosian, Lee, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein,
and John F. Hughes. 1997. “Real-Time
Nonphotorealistic Rendering.” ftp://
ftp.cs.brown.edu/pub/papers/graphics/research/
sig97-npr.pdf.

[Marshall 01] Marshall, Carl. 2001. “Cartoon Rendering: Real-
time Silhouette Edge Detection and Rendering.”
In Game Programming Gems 2, ed. Mark
DeLoura. 436-443. Charles River Media, Inc.

[McGuire and Hughes 04] McGuire, Morgan and John F. Hughes. 2004.
“Hardware-Determined Feature Edges.” http://
graphics.cs.williams.edu/papers/EdgesNPAR04/
edges-NPAR04.pdf.

85

[McReynolds and Blythe 99] McReynolds, Tom and David Blythe. 1999.
"Advanced Graphics Programming Techniques
Using OpenGL." SIGGRAPH `99 Course. http://
www.opengl.org/resources/code/samples/sig99/
advanced99/notes/node108.html.

[Next Level, The 03] Viewtiful Joe screenshot. Viewtiful Joe. 2003.
Developed by Capcom Production Studio 4.
Published by Capcom. http://www.the-
nextlevel.com/reviews/gamecube/
viewtiful_joe_import/.

[Northrup and Markosian 00] Northrup, J.D., Lee Markosian. 2000. “Artistic
Silhouettes: A Hybrid Approach.” http://
graphics.cs.brown.edu/research/art/artistic-sils/
artistic-sils-300dpi.pdf.

[Peters 10] Peters, Chris. 2010. Personal Communication.

[Raskar 01] Raskar, Ramesh. 2001. "Hardware Support for
Non-photorealistic Rendering." http://
www.cs.unc.edu/~raskar/HWWS/
raskarHardwareNPR2001.pdf.

[Raskar and Cohen 99] Raskar, Ramesh and Michael Cohen. 1999.
"Image Precision Silhouette Edges." http://
www.cs.unc.edu/~raskar/NPR/sil-i3d99.pdf.

[Rossignac and Emmerik 92] Rossignac, Jarek R. and Maarten van Emmerik.
1992. "Hidden contours on a frame-buffer."
http://www.gvu.gatech.edu/~jarek/papers/
Hidden.pdf.

[Saito and Takahashi 90] Saito, Takafumi and Tokiichiro Takahashi. 1990.
"Comprehensible Rendering of 3-D Shapes."
ACM: Computer Graphics, Volume 24, Number
4. August. http://citeseerx.ist.psu.edu/viewdoc/
download?
doi=10.1.1.83.4139&rep=rep1&type=pdf.

[Sander et al. 00] Sander, Pedro V., Xianfeng Gu, Steven J.
Gortler, Hugues Hoppe, and John Snyder. 2000.
“Silhouette Clipping.” http://
research.microsoft.com/en-us/um/people/
hoppe/silclip.pdf.

86

Bibliography

[Aila and Miettinen 04] Aila, Timo and Ville Miettinen. “dPVS: An
Occlusion Culling System for Massive Dynamic
Environments.” IEEE Computer Graphics and
Applications, vol. 24, no. 2. 86-97. March.

[Akenine-Möller et al. 08] Akenine-Möller, Tomas, Eric Haines, and Naty
Hoffman. 2008. “Non-Photorealistic Rendering.”
In Real-Time Rendering, Third Edition. 507-530.
A K Peters, Ltd.

[Binge Gamer 08] Ōkami screenshot. Ōkami (Wii). 2008.
Developed by Ready at Dawn. Published by
Capcom. http://www.bingegamer.net/2008/28-
new-okami-wii-screenshots/.

[Bosch 06] Bosch, Marc ten. 2006. “Real-Time Hardware-
Determined Feature Edges.” http://
www.marctenbosch.com/npr_edges/.

[Buchanan and Sousa 00] Buchanan, John W., and Mario C. Sousa. 2000.
“The edge buffer: A data structure for easy
silhouette rendering.” ftp://ftp.cs.ualberta.ca/
pub/juancho/edge.pdf.

[Card and Mitchell 02] Card, Drew and Jason L. Mitchell. 2002. "Non-
Photorealistic Rendering with Pixel and Vertex
Shaders." http://developer.amd.com/media/
gpu_assets/ShaderX_NPR.pdf.

[Decaudin 96] Decaudin, Philippe. 1996. "Cartoon-Looking
Rendering of 3D-Scenes." http://
www.antisphere.com/Research/Publis/
RR-2919-en.pdf.

[Evans 03] Evans, Christopher. 2003. “Thick Lines for Real-
Time Cel Shading.” http://
www.chrisevans3d.com/tutorials/cel_lines/.

[Evans 03] Bomb image. Evans, Christopher. 2003. “Thick
Lines for Real-Time Cel Shading.” http://
www.chrisevans3d.com/tutorials/cel_lines/.

[Everitt 00] Everitt, Cass. 2000. “One-Pass Silhouette
Rendering with GeForce and GeForce2.”
NVIDIA Corporation White Paper.

87

[Gooch and Gooch 01] Gooch, Bruce and Amy Gooch. 2001. “Feature
Edges: Silhouettes, Boundaries, and Creases”
and “Automatic Systems: Illustration (Artistic
Line Drawing).” In Non-Photorealistic
Rendering. 117-159. A K Peters, Ltd.

[Gooch et al. 99] Gooch, Bruce, Peter-Pike J. Sloan, Amy Gooch,
Peter Shirley, and Richard Riesenfeld. 1999.
“Interactive Technical Illustration.” http://
www.ppsloan.org/publications/iti99.pdf.

[Hall 03] Hall, Tom. 2003. “Silhouette Tracking.” http://
www.bytegeistsoftware.com/various/
SilhouetteTracking.pdf.

[Hertzmann 99] Hertzmann, Aaron. 1999. "Introduction to 3D
Non-Photorealistic Rendering: Silhouettes and
Outlines." http://citeseerx.ist.psu.edu/viewdoc/
download?
doi=10.1.1.93.9731&rep=rep1&type=pdf.

[Hertzmann and Zorin 00] Hertzmann, Aaron, and Denis Zorin. 2000.
“Illustrating smooth surfaces.” http://
mrl.nyu.edu/~dzorin/papers/
hertzmann2000iss.pdf.

[HIPR 00] Hypermedia Image Processing Reference
(HIPR). Robert Fisher, Simon Perkins, Ashley
Walker, and Erik Wolfart. 2000. http://
homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/
roberts.htm.

[Isenberg et al. 03] Isenberg, Tobias, Bert Freudenberg, Nick
Halper, Stefan Schlechtweg, and Thomas
Strothotte. 2003. "A Developer's Guide to
Silhouette Algorithms for Polygonal Models."
IEEE Computer Graphics and Applications, vol.
23, no. 4. 28-37. July.

[Kroon 09] Kroon, Dirk-Jan. 2009. "Numerical Optimization
Of Kernel Based Image Derivatives." http://
www.k-zone.nl/Kroon_DerivativePaper.pdf.

[Lander 01] Lander, Jeff. 2001. “Images from deep in the
programmer's cave.” Game Developer. May.
23-28.

88

[Li 10] Li, Xin. 2010. Personal Communication.

[Markosian et al. 97] Markosian, Lee, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein,
and John F. Hughes. 1997. “Real-Time
Nonphotorealistic Rendering.” ftp://
ftp.cs.brown.edu/pub/papers/graphics/research/
sig97-npr.pdf.

[Marshall 01] Marshall, Carl. 2001. “Cartoon Rendering: Real-
time Silhouette Edge Detection and Rendering.”
In Game Programming Gems 2, ed. Mark
DeLoura. 436-443. Charles River Media, Inc.

[McGuire and Hughes 04] McGuire, Morgan and John F. Hughes. 2004.
“Hardware-Determined Feature Edges.” http://
graphics.cs.williams.edu/papers/EdgesNPAR04/
edges-NPAR04.pdf.

[McReynolds and Blythe 99] McReynolds, Tom and David Blythe. 1999.
"Advanced Graphics Programming Techniques
Using OpenGL." SIGGRAPH `99 Course. http://
www.opengl.org/resources/code/samples/sig99/
advanced99/notes/node108.html.

[Mitchell 02] Mitchell, Jason L. 2002. “Image Processing with
1.4 Pixel Shaders in Direct3D.” http://
developer.amd.com/media/gpu_assets/
ShaderX_ImageProcessing.pdf.

[Next Level, The 03] Viewtiful Joe screenshot. Viewtiful Joe. 2003.
Developed by Capcom Production Studio 4.
Published by Capcom. http://www.the-
nextlevel.com/reviews/gamecube/
viewtiful_joe_import/.

[Northrup and Markosian 00] Northrup, J.D., Lee Markosian. 2000. “Artistic
Silhouettes: A Hybrid Approach.” http://
graphics.cs.brown.edu/research/art/artistic-sils/
artistic-sils-300dpi.pdf.

[Peters 10] Peters, Chris. 2010. Personal Communication.

[Raskar 01] Raskar, Ramesh. 2001. "Hardware Support for
Non-photorealistic Rendering." http://
www.cs.unc.edu/~raskar/HWWS/
raskarHardwareNPR2001.pdf.

89

[Raskar and Cohen 99] Raskar, Ramesh and Michael Cohen. 1999.
"Image Precision Silhouette Edges." http://
www.cs.unc.edu/~raskar/NPR/sil-i3d99.pdf.

[Rossignac and Emmerik 92] Rossignac, Jarek R. and Maarten van Emmerik.
1992. "Hidden contours on a frame-buffer."
http://www.gvu.gatech.edu/~jarek/papers/
Hidden.pdf.

[Saito and Takahashi 90] Saito, Takafumi and Tokiichiro Takahashi. 1990.
"Comprehensible Rendering of 3-D Shapes."
ACM: Computer Graphics, Volume 24, Number
4. August. http://citeseerx.ist.psu.edu/viewdoc/
download?
doi=10.1.1.83.4139&rep=rep1&type=pdf.

[Sander et al. 00] Sander, Pedro V., Xianfeng Gu, Steven J.
Gortler, Hugues Hoppe, and John Snyder. 2000.
“Silhouette Clipping.” http://
research.microsoft.com/en-us/um/people/
hoppe/silclip.pdf.

90

