
Non-Photorealistic Real-Time
Edge Rendering using

Non-Duplicate Parallel
Detection and Capping

Thesis Defense
By Dwight House

May 21st, 2010
Advisor: Dr. Xin Li

Part I

• Non-Photorealistic Rendering

• Definitions

• Survey Overview

Non-Photorealistic Rendering

• Non-Photorealistic Rendering (NPR) presents
more and different information, compared to
photorealistic rendering

• Artistic styles

• Data representation

• A few game examples...

TechnicalQuake/NPRQuake

Legend of Zelda: Wind Waker

MadWorld

Okami

XIII

Others

Edges

• Edges are one of the most important structures in
NPR

• They have many uses...

Applications

• Differentiate multiple objects

• Differentiate sections of objects

• Highlighting individual objects

• Enhance structural perception

• Achieve specific graphical style

• Anti-Aliasing

Types of Edges

• Contour Edges - Polygon edge separating a front-
facing polygon from a back-facing one

• Crease Edges - Polygon edges where the adjacent
polygons’ normals are greater than a user-defined
angle from each other

• Boundary Edges - Polygon edges connected to
only one polygon

• Intersection Edges - Non-polygonal edge collision
of two polygons

• Marked Edges - Polygon edges that are marked to
always be drawn

Additional Terminology

• Silhouette - Contour on the outer border

• Ridge Crease - Crease that points at the camera

• Valley Crease - Crease that points away from the
camera

• Drawable Edge - Polygon edges that will be drawn
on a given frame, distinguished from all polygon
edges

How to Identify Edge Types

Edge Practical Qualities

Contour Crease Boundary Marked Intersection

View-Independent No Yes Yes Yes Yes

Preprocessable
(No Animate/Move)

No Yes Yes Yes Yes

Preprocessable
(With Animation)

No No Yes Yes No

Preprocessable
(World Movement)

No Yes Yes Yes No

Survey Overview

• Method categories

• Hardware methods

• Image-space method

• Object-space methods

• Miscellaneous methods

Hardware Methods

• Render edges as a bi-product of the order and
method of rendering, no specific detection step

• Pros

• No preprocessing necessary

• Simple to implement

• Supported on old platforms

• Cons

• Usually only contour edges

• Lacks customizability

Hardware Methods

• For example,

1. Render front-facing polygons

2. Render back-facing polygons in wireframe mode
with thickened edges

• Generates edges along the contours

Image-space Method

• Uses image filters to detect areas of rapid change
(edges) in data representations of the scene

• Pros

• Naturally detects intersection edges

• Constant speed regardless of scene complexity

• Cons

• Edge thickness unpredictable

• Lacks customizability

Image-space Method

• First, render a normal and depth buffer to textures (a, c)

• Then, apply image filter to both textures (b, d), and...

• Final rendered image is modified by the detected
edges (e)

Object-space Methods

• Detects edges in 3D space by checking individual
polygon edges

• Pros

• Very accurate

• Easily controlled and customized

• Cons

• Generally the slowest type of method

• Usually requires preprocessing

Object-space Methods

• At every frame, iterate through all unique polygon
edges, checking them for drawability

• Those edges detected as drawable are expanded
and rendered

• Customization is added here

• Edge thickness

• Edge color

• Textured edges

Object-space Methods

• Variations

• Do detection on the GPU

• Probabilistically check sub-set of total edges

• Don’t test edges for co-planar polygons

• Generate caps to fill gaps at edge connections

• ...and many more

Object-space Examples

Miscellaneous Methods
• Everything else, for example:

• Render black at places where the
normal is nearly perpendicular to the
view vector (right)

• For a scaled-up copy of mesh, render
it black, with inverted normals, and
back-face culling (bottom)

Part II

• Specific Area of Study

• Contributions

• Analysis

• Demo

• Future Work

Object-space Edges on GPU

• Morgan McGuire and John F. Hughes’ paper from
2004 took the brute-force object-space edge
detection and implemented it on the GPU

• Trades higher memory usage for a speed increase
(due to parallel processing)

• 30 times slower than rendering the mesh normally

• 15 to 30 times faster than the same edge detection
operation on the CPU for complex meshes

How it Works
• Find all unique edges in a mesh

• Obtain the edge data: v0, v1, v2, v3, n0, n1, r, and i

• Duplicate the edge data 3 times (4 total)

• Make sure i is unique (0, 1, 2, 3)

• Send to vertex buffers

How it Works

• Drawability tests:
• Contour: [dot(nA, (eye - v0)) * dot(nB, (eye - v0)) < 0]

• Ridge Crease: [dot(nA, nB) < -cos(θR)] && dot((v3 - v2), nA) <= 0]

• Valley Crease: [dot(nA, nB) < -cos(θV)] && dot((v3 - v2), nA) > 0]

• Marked: [v3 == v0]

• Boundary: [v3 == v0]

• Where

• θR and θV are user-defined angles for the ridge and valley
creases

• nA and nB are the left and right adjacent face normals

• eye is the world camera position

How it Works
• For drawable edges, generate the four points of a

screen-space quad

• For non-drawable edges, generate a degenerate quad

• The p vector is the perpendicular vector to the
screen-space edge vector

Variations

• Rasterized lines can be used instead of quads,
requiring only two duplicates

• Contour edges can be rendered as a “half-quad,”
which only renders outside the mesh

Capping

• McGuire and Hughes generated two half caps

• One on each side of drawable edges

• Line up along the screen-space vertex normals

The Complete Setup

• Four Passes

• Render mesh with depth offset

• Render thick edges

• Render edge caps for left vertex

• Render edge caps for right vertex

Problems

• Screen-space thickened edges can overpower the mesh

• Normals may not represent curvature of the surface
creating bad caps (called “bad normal” problem)

• High memory usage and computation duplication

• McGuire and Hughes suggested the use of geometry
shaders and data textures

Contributions

• Depth-based thickness of edges

• Solve the “bad normal” problem

• Reduce render passes with alternate edge types

• Attempt to use new technology to make better
edges and caps

• Fewer computations

• More accurate caps

Screen-based Thickness

• Affects object depth perception

• Distant edges can overwhelm the mesh

Depth-based Thickness

• Fixes both previous issues

• Adding a minimum prevents loss of distant edges

Bad Normal Problem

• Case 1: three or more drawable edges converge

• Three (or more) normals are correct, though edge
redundancy usually prevents complete failures

Bad Normal Problem

• Case 2: curved area abuts a flat area

• Only one normal is needed

Solving Bad Normals

• Use “edge splitting” command in 3D editor and
allow for duplicate edges

Solving Bad Normals

• Pick better normals for the edges during the mesh
creation process

Alternate Edge/Cap Types

• Combine caps into edges to reduce render passes

• Half Hex Method

• House Method

• Plug Method

• Double caps to handle bad normals

Demo

New Technology

• Last year, version 1.0 of OpenCL (Open Compute
Library) was released

• General, massively parallel computation on GPUs
and other devices

• Interoperable with OpenGL

Non-Duplicate Parallel Edge
Detection and Capping

• OpenCL’s abilities allow another method of edge
detection similar to McGuire and Hughes’

• Removes calculation and data duplication

• Allows for higher accuracy caps

How it Works

• Store only adjacency information

• Use mesh vertex data already on the GPU

• Index list describes the edge, not the polygons

• Edge detection and generation is largely the same
as in McGuire and Hughes’ paper

• Output vertices must be temporarily stored

How it Works

• Output from the edge detecting step can be used
to detect and create appropriate caps

• Cap buffer stores indexes of connected edges

• No normals needed

How it Works

• Determine the vectors along the edges from the
edge detection output

• Calculate the “middle vector” (used like a normal)
• -Normalize(normalizedEdgeVector1 + normalizedEdgeVector2);

• With the middle vector and the two edges’
perpendicular vectors, generate a quad that
perfectly fills the gap

Capping with Adjacency

How it Works
Trivial set of connected
polygons in 2D space

V[1] V[3]

V[2]V[0]

Vertex BufferVertex Buffer

Data ID

(1.0, 1.0) V[0]

(1.0, 2.0) V[1]

(2.0, 1.0) V[2]

(2.0, 2.0) V[3]
Cap BufferCap Buffer

Data ID

E[0, 2] C[0]

E[0, 1] C[1]

E[0, 3] C[2]

E[1, 3] C[3]

E[1, 2] C[4]

E[1, 4] C[5]

E[2, 4] C[6]

E[3, 4] C[7]

Edge BufferEdge Buffer

Data ID

V[0, 1, 2, 0] E[0]

V[1, 2, 0, 3] E[1]

V[0, 2, 1, 0] E[2]

V[1, 3, 2, 1] E[3]

V[2, 3, 1, 2] E[4]

Offset

ReferenceOutput

Edge Out BufferEdge Out Buffer

Data ID

[VERTICES] O[0]

[VERTICES] O[1]

[VERTICES] O[2]

[VERTICES] O[3]

[VERTICES] O[4]

Cap Out BufferCap Out Buffer

Data ID

[VERTICES] O2[0]

[VERTICES] O2[1]

[VERTICES] O2[2]

[VERTICES] O2[3]

[VERTICES] O2[4]

[VERTICES] O2[5]

[VERTICES] O2[6]

[VERTICES] O2[7]

Output

The Complete Setup

• 2 Compute Passes

• Create Edges

• Create Caps

• 3 Render Passes

• Mesh

• Edges (simple)

• Caps (simple)

Setbacks

• My OpenCL implementation was slow

• Several potential causes were found

• Using non-vector memory loads/stores

• Memory access speeds were not equivalent

• GPU operations occur in lock-step

• Output must be stored temporarily before
rendering

• ...and possibly several others

Method Alterations

• Optimized kernel with vector memory operations

• Implemented both methods on the CPU, where
memory speeds are equivalent and short-circuiting
is possible

• Implemented McGuire and Hughes’ capping
method in OpenCL

• Experimented with other methods as well

Comparative Analysis

• How many operations are performed?

• How much memory is used?

• How much geometry is drawn?

• How fast are they?

CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)

0 100 200 300

9

0

12

3

15

5

16

4

9

0

12

0

48

18

56

14

90

3

120

31

291

83

272

81

99

3

132

36

243

62

248

59

Add/Sub Multiply Division Square Root Smaller is better

Arithmetic Operations

CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)

0 10 20 30 40 50

0

0

0

0

12

9

12

9

21

9

28

7

33

14

44

9

12

1

16

4

24

6

36

7

Logic Forks Comparisons Typecasts Smaller is better

Logical/Other Operations

Processing Ratios

Edge CL:GLSL Ratio
Worst Case

Cap CL:GLSL Ratio
Worst Case

Edge CL:GLSL Ratio
Best Case

Cap CL:GLSL Ratio
Best Case

Add/Sub

Multiply

Division

Square Root

Logic Forks

Comparisons

Typecasts

0.238 0.255 0.272 0.030

0.298 0.285 0.258 0.033

0.25 0.375 0 0

0.25 0.333 0.25 0

0.194 0.25 0.25 0.083

0.205 0.424 0.25 0.429

0.75 0.75 N/A N/A

Smaller is better
Note that though specific values will change from implementation to implementation, the ratios remain
approximately the same

GPU Memory Usage

Memory Usage Per Item

CL Edge

GLSL Edge

CL Cap

GLSL Cap

640

2688

576

96

Values are in bits
Assumes 32 bit floats/integers
GLSL caps are small due to reuse of data in GLSL edges
GLSL quantities do not include the transparent memory used within the pipeline
Smaller is better

Edge and Cap Quantities
Edges (CL/GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Normal Cube

Simple Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

96 320 192 3.33 2

96 192 192 2 2

64 592 128 9.25 2

2016 6944 4032 3.44 2

1920 9570 3840 4.98 2

1180 4420 2360 3.75 2

1449 7188 2898 4.96 2

20812 107290 41624 5.16 2

Edge and Cap Memory Usage

In general, the CL method is about as memory intensive as McGuire’s method
Values in bits, assumes 32 bit floats/integers
Smaller is better

Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 29184 69120 0.422

Merged Cube 21504 34560 0.622

Cylinder 245760 276480 0.888

Merged Cylinder 172032 276480 0.622

Cone 381952 184320 2.07

Quad Sphere 5289984 5806080 0.911

Ico Sphere 6741120 5529600 1.21

Teapot 3301120 3398400 0.971

Monkey 5067648 4173120 1.21

Bunny 75118720 59938560 1.25

Memory Usage with
McGuire and Hughes’ Caps

McGuire and Hughes’ caps, implemented in OpenCL, save a lot of memory over the shader version
Values in bits, assumes 32 bit floats/integers
Smaller is better

Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 39936 69120 0.577

Merged Cube 19968 34560 0.577

Cylinder 159744 276480 0.577

Merged Cylinder 159744 276480 0.577

Cone 106496 184320 0.577

Quad Sphere 3354624 5806080 0.577

Ico Sphere 3194880 5529600 0.577

Teapot 1963520 3398400 0.577

Monkey 2411136 4173120 0.577

Bunny 34631168 59938560 0.577

Drawable Geometry Comparison
Edges (CL & GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Cube

Merged Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

130 136 260 1.04 2

66 72 132 1.09 2

34 37 68 1.09 2

72 72 144 1 2

55 55 110 1 2

205 228 410 1.11 2

345 488 690 1.41 2

1175 1397 2350 1.19 2

The number of drawable edges and caps is usually view dependent
These numbers assume the camera is pointing at the origin while positioned at (3, 3, 3)
The models are at the origin, and generally are of dimension 1

Smaller is better

Speed Comparisons: CPU

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 1135 1156 0.982

Merged Cube 1155 1180 0.979

Cylinder 1139 1182 0.964

Merged Cylinder 1126 1128 0.998

Cone 1276 1338 0.954

Quad Sphere 679 144 4.715

Ico Sphere 631 155 4.071

Teapot 906 226 4.009

Monkey 602 176 3.42

Bunny 54 14 3.857

Speed Comparisons: GPU

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 760 1173 0.647

Merged Cube 768 1184 0.648

Cylinder 733 1103 0.664

Merged Cylinder 741 1142 0.648

Cone 724 1244 0.581

Quad Sphere 416 713 0.583

Ico Sphere 360 739 0.487

Teapot 464 850 0.545

Monkey 334 770 0.433

Bunny 31 134 0.231

Speed Comparisons: GPU with
McGuire and Hughes’ Capping

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 762 1173 0.649

Merged Cube 770 1184 0.65

Cylinder 735 1103 0.666

Merged Cylinder 749 1142 0.655

Cone 670 1244 0.538

Quad Sphere 584 713 0.819

Ico Sphere 593 739 0.802

Teapot 631 850 0.742

Monkey 634 770 0.823

Bunny 159 134 1.18

Conclusion

• OpenCL has some potential for complex meshes
in terms of speed, but it’s not quite there yet

• Higher accuracy caps are the only real advantage
to the OpenCL implementation at this time

• The other contributions (depth-based thickening,
methods of reducing bad normals, and alternate
edge creation methods) work now

Demo

Future Work

• Fully implementing McGuire and Hughes’ method
down to the duplicate data would allow for
memory caching and probably faster speeds

• My capping method could be implemented with a
geometry shader/data texture setup

• Microsoft’s DirectCompute has an advantage over
OpenCL in that it can send data directly to the
graphics pipeline

• Chris Peters suggested another capping method
that could lead to equal quality caps without
checking every possible combination of edges

Questions?

