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Part I

• Non-Photorealistic Rendering

• Definitions

• Survey Overview



Non-Photorealistic Rendering

• Non-Photorealistic Rendering (NPR) presents 
more and different information, compared to 
photorealistic rendering

• Artistic styles

• Data representation

• A few game examples...



TechnicalQuake/NPRQuake



Legend of Zelda: Wind Waker



MadWorld



Okami



XIII



Others



Edges

• Edges are one of the most important structures in 
NPR

• They have many uses...



Applications

• Differentiate multiple objects

• Differentiate sections of objects

• Highlighting individual objects

• Enhance structural perception

• Achieve specific graphical style

• Anti-Aliasing



Types of Edges

• Contour Edges - Polygon edge separating a front-
facing polygon from a back-facing one

• Crease Edges - Polygon edges where the adjacent 
polygons’ normals are greater than a user-defined 
angle from each other

• Boundary Edges - Polygon edges connected to 
only one polygon

• Intersection Edges - Non-polygonal edge collision 
of two polygons

• Marked Edges - Polygon edges that are marked to 
always be drawn



Additional Terminology

• Silhouette - Contour on the outer border

• Ridge Crease - Crease that points at the camera

• Valley Crease - Crease that points away from the 
camera

• Drawable Edge - Polygon edges that will be drawn 
on a given frame, distinguished from all polygon 
edges



How to Identify Edge Types



Edge Practical Qualities

Contour Crease Boundary Marked Intersection

View-Independent No Yes Yes Yes Yes

Preprocessable
(No Animate/Move)

No Yes Yes Yes Yes

Preprocessable
(With Animation)

No No Yes Yes No

Preprocessable
(World Movement)

No Yes Yes Yes No



Survey Overview

• Method categories

• Hardware methods

• Image-space method

• Object-space methods

• Miscellaneous methods



Hardware Methods

• Render edges as a bi-product of the order and 
method of rendering, no specific detection step

• Pros

• No preprocessing necessary

• Simple to implement

• Supported on old platforms

• Cons

• Usually only contour edges

• Lacks customizability



Hardware Methods

• For example,

1. Render front-facing polygons

2. Render back-facing polygons in wireframe mode 
with thickened edges

• Generates edges along the contours



Image-space Method

• Uses image filters to detect areas of rapid change 
(edges) in data representations of the scene

• Pros

• Naturally detects intersection edges

• Constant speed regardless of scene complexity

• Cons

• Edge thickness unpredictable

• Lacks customizability



Image-space Method

• First, render a normal and depth buffer to textures (a, c)

• Then, apply image filter to both textures (b, d), and...

• Final rendered image is modified by the detected 
edges (e)



Object-space Methods

• Detects edges in 3D space by checking individual 
polygon edges

• Pros

• Very accurate

• Easily controlled and customized

• Cons

• Generally the slowest type of method

• Usually requires preprocessing



Object-space Methods

• At every frame, iterate through all unique polygon 
edges, checking them for drawability

• Those edges detected as drawable are expanded 
and rendered

• Customization is added here

• Edge thickness

• Edge color

• Textured edges



Object-space Methods

• Variations

• Do detection on the GPU

• Probabilistically check sub-set of total edges

• Don’t test edges for co-planar polygons

• Generate caps to fill gaps at edge connections

• ...and many more



Object-space Examples



Miscellaneous Methods
• Everything else, for example:

• Render black at places where the 
normal is nearly perpendicular to the 
view vector (right)

• For a scaled-up copy of mesh, render 
it black, with inverted normals, and 
back-face culling (bottom)



Part II

• Specific Area of Study

• Contributions

• Analysis

• Demo

• Future Work



Object-space Edges on GPU

• Morgan McGuire and John F. Hughes’ paper from 
2004 took the brute-force object-space edge 
detection and implemented it on the GPU

• Trades higher memory usage for a speed increase 
(due to parallel processing)

• 30 times slower than rendering the mesh normally

• 15 to 30 times faster than the same edge detection 
operation on the CPU for complex meshes



How it Works
• Find all unique edges in a mesh

• Obtain the edge data: v0, v1, v2, v3, n0, n1, r, and i

• Duplicate the edge data 3 times (4 total)

• Make sure i is unique (0, 1, 2, 3)

• Send to vertex buffers



How it Works

• Drawability tests:
• Contour: [dot(nA, (eye - v0)) * dot(nB, (eye - v0)) < 0]

• Ridge Crease: [dot(nA, nB) < -cos(θR)] && dot((v3 - v2), nA) <= 0]

• Valley Crease: [dot(nA, nB) < -cos(θV)] && dot((v3 - v2), nA) > 0]

• Marked: [v3 == v0]

• Boundary: [v3 == v0]

• Where

• θR and θV are user-defined angles for the ridge and valley 
creases

• nA and nB are the left and right adjacent face normals

• eye is the world camera position



How it Works
• For drawable edges, generate the four points of a 

screen-space quad

• For non-drawable edges, generate a degenerate quad

• The p vector is the perpendicular vector to the 
screen-space edge vector



Variations

• Rasterized lines can be used instead of quads, 
requiring only two duplicates

• Contour edges can be rendered as a “half-quad,” 
which only renders outside the mesh



Capping

• McGuire and Hughes generated two half caps

• One on each side of drawable edges

• Line up along the screen-space vertex normals



The Complete Setup

• Four Passes

• Render mesh with depth offset

• Render thick edges

• Render edge caps for left vertex

• Render edge caps for right vertex



Problems

• Screen-space thickened edges can overpower the mesh

• Normals may not represent curvature of the surface 
creating bad caps (called “bad normal” problem)

• High memory usage and computation duplication

• McGuire and Hughes suggested the use of geometry 
shaders and data textures



Contributions

• Depth-based thickness of edges

• Solve the “bad normal” problem

• Reduce render passes with alternate edge types

• Attempt to use new technology to make better 
edges and caps

• Fewer computations

• More accurate caps



Screen-based Thickness

• Affects object depth perception

• Distant edges can overwhelm the mesh



Depth-based Thickness

• Fixes both previous issues

• Adding a minimum prevents loss of distant edges



Bad Normal Problem

• Case 1: three or more drawable edges converge

• Three (or more) normals are correct, though edge 
redundancy usually prevents complete failures



Bad Normal Problem

• Case 2: curved area abuts a flat area

• Only one normal is needed



Solving Bad Normals

• Use “edge splitting” command in 3D editor and 
allow for duplicate edges



Solving Bad Normals

• Pick better normals for the edges during the mesh 
creation process



Alternate Edge/Cap Types

• Combine caps into edges to reduce render passes

• Half Hex Method

• House Method

• Plug Method

• Double caps to handle bad normals



Demo



New Technology

• Last year, version 1.0 of OpenCL (Open Compute 
Library) was released

• General, massively parallel computation on GPUs 
and other devices

• Interoperable with OpenGL



Non-Duplicate Parallel Edge 
Detection and Capping

• OpenCL’s abilities allow another method of edge 
detection similar to McGuire and Hughes’

• Removes calculation and data duplication

• Allows for higher accuracy caps



How it Works

• Store only adjacency information

• Use mesh vertex data already on the GPU

• Index list describes the edge, not the polygons

• Edge detection and generation is largely the same 
as in McGuire and Hughes’ paper

• Output vertices must be temporarily stored



How it Works

• Output from the edge detecting step can be used 
to detect and create appropriate caps

• Cap buffer stores indexes of connected edges

• No normals needed



How it Works

• Determine the vectors along the edges from the 
edge detection output

• Calculate the “middle vector” (used like a normal)
• -Normalize(normalizedEdgeVector1 + normalizedEdgeVector2);

• With the middle vector and the two edges’ 
perpendicular vectors, generate a quad that 
perfectly fills the gap



Capping with Adjacency



How it Works
Trivial set of connected
polygons in 2D space

V[1] V[3]

V[2]V[0]

Vertex BufferVertex Buffer

Data ID

(1.0, 1.0) V[0]

(1.0, 2.0) V[1]

(2.0, 1.0) V[2]

(2.0, 2.0) V[3]
Cap BufferCap Buffer

Data ID

E[0, 2] C[0]

E[0, 1] C[1]

E[0, 3] C[2]

E[1, 3] C[3]

E[1, 2] C[4]

E[1, 4] C[5]

E[2, 4] C[6]

E[3, 4] C[7]

Edge BufferEdge Buffer

Data ID

V[0, 1, 2, 0] E[0]

V[1, 2, 0, 3] E[1]

V[0, 2, 1, 0] E[2]

V[1, 3, 2, 1] E[3]

V[2, 3, 1, 2] E[4]

Offset

ReferenceOutput

Edge Out BufferEdge Out Buffer

Data ID

[VERTICES] O[0]

[VERTICES] O[1]

[VERTICES] O[2]

[VERTICES] O[3]

[VERTICES] O[4]

Cap Out BufferCap Out Buffer

Data ID

[VERTICES] O2[0]

[VERTICES] O2[1]

[VERTICES] O2[2]

[VERTICES] O2[3]

[VERTICES] O2[4]

[VERTICES] O2[5]

[VERTICES] O2[6]

[VERTICES] O2[7]

Output



The Complete Setup

• 2 Compute Passes

• Create Edges

• Create Caps

• 3 Render Passes

• Mesh

• Edges (simple)

• Caps (simple)



Setbacks

• My OpenCL implementation was slow

• Several potential causes were found

• Using non-vector memory loads/stores

• Memory access speeds were not equivalent

• GPU operations occur in lock-step

• Output must be stored temporarily before 
rendering

• ...and possibly several others



Method Alterations

• Optimized kernel with vector memory operations

• Implemented both methods on the CPU, where 
memory speeds are equivalent and short-circuiting 
is possible

• Implemented McGuire and Hughes’ capping 
method in OpenCL

• Experimented with other methods as well



Comparative Analysis

• How many operations are performed?

• How much memory is used?

• How much geometry is drawn?

• How fast are they?



CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL  - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)
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CL - Edge (Worst)

GLSL - Edge (Worst)

CL - Cap (Worst)

GLSL - Cap (Worst)

CL - Edge (Best)

GLSL  - Edge (Best)

CL - Cap (Best)

GLSL - Cap (Best)
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Processing Ratios

Edge CL:GLSL Ratio
Worst Case

Cap CL:GLSL Ratio
Worst Case

Edge CL:GLSL Ratio
Best Case

Cap CL:GLSL Ratio
Best Case

Add/Sub

Multiply

Division

Square Root

Logic Forks

Comparisons

Typecasts

0.238 0.255 0.272 0.030

0.298 0.285 0.258 0.033

0.25 0.375 0 0

0.25 0.333 0.25 0

0.194 0.25 0.25 0.083

0.205 0.424 0.25 0.429

0.75 0.75 N/A N/A

Smaller is better
Note that though specific values will change from implementation to implementation, the ratios remain 
approximately the same



GPU Memory Usage

Memory Usage Per Item

CL Edge

GLSL Edge

CL Cap

GLSL Cap

640

2688

576

96

Values are in bits
Assumes 32 bit floats/integers
GLSL caps are small due to reuse of data in GLSL edges
GLSL quantities do not include the transparent memory used within the pipeline
Smaller is better



Edge and Cap Quantities
Edges (CL/GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Normal Cube

Simple Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

96 320 192 3.33 2

96 192 192 2 2

64 592 128 9.25 2

2016 6944 4032 3.44 2

1920 9570 3840 4.98 2

1180 4420 2360 3.75 2

1449 7188 2898 4.96 2

20812 107290 41624 5.16 2



Edge and Cap Memory Usage

In general, the CL method is about as memory intensive as McGuire’s method
Values in bits, assumes 32 bit floats/integers
Smaller is better

Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 29184 69120 0.422

Merged Cube 21504 34560 0.622

Cylinder 245760 276480 0.888

Merged Cylinder 172032 276480 0.622

Cone 381952 184320 2.07

Quad Sphere 5289984 5806080 0.911

Ico Sphere 6741120 5529600 1.21

Teapot 3301120 3398400 0.971

Monkey 5067648 4173120 1.21

Bunny 75118720 59938560 1.25



Memory Usage with
McGuire and Hughes’ Caps

McGuire and Hughes’ caps, implemented in OpenCL, save a lot of memory over the shader version
Values in bits, assumes 32 bit floats/integers
Smaller is better

Total CL Memory Total GLSL Memory Memory Ratio (CL : GLSL)

Cube 39936 69120 0.577

Merged Cube 19968 34560 0.577

Cylinder 159744 276480 0.577

Merged Cylinder 159744 276480 0.577

Cone 106496 184320 0.577

Quad Sphere 3354624 5806080 0.577

Ico Sphere 3194880 5529600 0.577

Teapot 1963520 3398400 0.577

Monkey 2411136 4173120 0.577

Bunny 34631168 59938560 0.577



Drawable Geometry Comparison
Edges (CL & GLSL) Caps (CL) Caps (GLSL) Cap:Edge Ratio (CL) Cap:Edge Ratio (GLSL)

Cube

Merged Cube

Cylinder

Merged Cylinder

Cone

Quad Sphere

Ico Sphere

Teapot

Monkey

Bunny

24 24 48 1 2

12 24 24 2 2

130 136 260 1.04 2

66 72 132 1.09 2

34 37 68 1.09 2

72 72 144 1 2

55 55 110 1 2

205 228 410 1.11 2

345 488 690 1.41 2

1175 1397 2350 1.19 2

The number of drawable edges and caps is usually view dependent
These numbers assume the camera is pointing at the origin while positioned at (3, 3, 3)
The models are at the origin, and generally are of dimension 1

Smaller is better



Speed Comparisons: CPU

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 1135 1156 0.982

Merged Cube 1155 1180 0.979

Cylinder 1139 1182 0.964

Merged Cylinder 1126 1128 0.998

Cone 1276 1338 0.954

Quad Sphere 679 144 4.715

Ico Sphere 631 155 4.071

Teapot 906 226 4.009

Monkey 602 176 3.42

Bunny 54 14 3.857



Speed Comparisons: GPU

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 760 1173 0.647

Merged Cube 768 1184 0.648

Cylinder 733 1103 0.664

Merged Cylinder 741 1142 0.648

Cone 724 1244 0.581

Quad Sphere 416 713 0.583

Ico Sphere 360 739 0.487

Teapot 464 850 0.545

Monkey 334 770 0.433

Bunny 31 134 0.231



Speed Comparisons: GPU with 
McGuire and Hughes’ Capping

Bigger is better

Framerate (CL) Framerate (GLSL) Ratio (CL:GLSL)

Cube 762 1173 0.649

Merged Cube 770 1184 0.65

Cylinder 735 1103 0.666

Merged Cylinder 749 1142 0.655

Cone 670 1244 0.538

Quad Sphere 584 713 0.819

Ico Sphere 593 739 0.802

Teapot 631 850 0.742

Monkey 634 770 0.823

Bunny 159 134 1.18



Conclusion

• OpenCL has some potential for complex meshes 
in terms of speed, but it’s not quite there yet

• Higher accuracy caps are the only real advantage 
to the OpenCL implementation at this time

• The other contributions (depth-based thickening, 
methods of reducing bad normals, and alternate 
edge creation methods) work now



Demo



Future Work

• Fully implementing McGuire and Hughes’ method 
down to the duplicate data would allow for 
memory caching and probably faster speeds

• My capping method could be implemented with a 
geometry shader/data texture setup

• Microsoft’s DirectCompute has an advantage over 
OpenCL in that it can send data directly to the 
graphics pipeline

• Chris Peters suggested another capping method 
that could lead to equal quality caps without 
checking every possible combination of edges



Questions?


